液态金属负极碳包封碱离子电池。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2023-11-16 DOI:10.1002/adma.202309732
Chenghao Huang, Baiyu Guo, Xiaodong Wang, Qingping Cao, Dongxian Zhang, Jianyu Huang, Jian-Zhong Jiang
{"title":"液态金属负极碳包封碱离子电池。","authors":"Chenghao Huang,&nbsp;Baiyu Guo,&nbsp;Xiaodong Wang,&nbsp;Qingping Cao,&nbsp;Dongxian Zhang,&nbsp;Jianyu Huang,&nbsp;Jian-Zhong Jiang","doi":"10.1002/adma.202309732","DOIUrl":null,"url":null,"abstract":"<p>Gallium-based metallic liquids, exhibiting high theoretical capacity, are considered a promising anode material for room-temperature liquid metal alkali-ion batteries. However, electrochemical performances, especially the cyclic stability, of the liquid metal anode for alkali-ion batteries are strongly limited because of the volume expansion and unstable solid electrolyte interphase film of liquid metal. Here, the bottleneck problem is resolved by designing carbon encapsulation on gallium–indium liquid metal nanoparticles (EGaIn@C LMNPs). A superior cycling stability (644 mAh g<sup>−1</sup> after 800 cycles at 1.0 A g<sup>−1</sup>) is demonstrated for lithium-ion batteries, and excellent cycle stability (87 mAh g<sup>−1</sup> after 2500 cycles at 1.0 A g<sup>−1</sup>) is achieved for sodium-ion batteries by carbon encapsulation of the liquid metal anode. Morphological and phase changes of EGaIn@C LMNPs during the electrochemical reaction process are revealed by in situ transmission electron microscopy measurements in real-time. The origin for the excellent performance is uncovered, that is the EGaIn@C core–shell structure effectively suppresses the non-uniform volume expansion of LMNPs from ≈160% to 127%, improves the electrical conductivity of the LMNPs, and exhibits superior electrochemical kinetics and a self-healing phenomenon. This work paves the way for the applications of room-temperature liquid metal anodes for high-performance alkali-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alkali-Ion Batteries by Carbon Encapsulation of Liquid Metal Anode\",\"authors\":\"Chenghao Huang,&nbsp;Baiyu Guo,&nbsp;Xiaodong Wang,&nbsp;Qingping Cao,&nbsp;Dongxian Zhang,&nbsp;Jianyu Huang,&nbsp;Jian-Zhong Jiang\",\"doi\":\"10.1002/adma.202309732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gallium-based metallic liquids, exhibiting high theoretical capacity, are considered a promising anode material for room-temperature liquid metal alkali-ion batteries. However, electrochemical performances, especially the cyclic stability, of the liquid metal anode for alkali-ion batteries are strongly limited because of the volume expansion and unstable solid electrolyte interphase film of liquid metal. Here, the bottleneck problem is resolved by designing carbon encapsulation on gallium–indium liquid metal nanoparticles (EGaIn@C LMNPs). A superior cycling stability (644 mAh g<sup>−1</sup> after 800 cycles at 1.0 A g<sup>−1</sup>) is demonstrated for lithium-ion batteries, and excellent cycle stability (87 mAh g<sup>−1</sup> after 2500 cycles at 1.0 A g<sup>−1</sup>) is achieved for sodium-ion batteries by carbon encapsulation of the liquid metal anode. Morphological and phase changes of EGaIn@C LMNPs during the electrochemical reaction process are revealed by in situ transmission electron microscopy measurements in real-time. The origin for the excellent performance is uncovered, that is the EGaIn@C core–shell structure effectively suppresses the non-uniform volume expansion of LMNPs from ≈160% to 127%, improves the electrical conductivity of the LMNPs, and exhibits superior electrochemical kinetics and a self-healing phenomenon. This work paves the way for the applications of room-temperature liquid metal anodes for high-performance alkali-ion batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202309732\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202309732","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镓基金属液体具有较高的理论容量,被认为是一种很有前途的室温液态金属碱离子电池负极材料。然而,由于液态金属的体积膨胀和固体电解质间膜的不稳定,极大地限制了碱离子电池用液态金属阳极的电化学性能,特别是循环稳定性。本文通过设计镓铟液态金属纳米颗粒(EGaIn@C LMNPs)的碳包封来解决瓶颈问题。锂离子电池具有优异的循环稳定性(在1.0 A g-1下循环800次后达到644 mAh g-1),钠离子电池通过碳包覆液态金属阳极实现了优异的循环稳定性(在1.0 A g-1下循环2500次后达到87 mAh g-1,容量保留率为82.3%)。通过原位透射电镜实时测量,揭示了EGaIn@C LMNPs在电化学反应过程中的形态和相变化。研究发现,EGaIn@C核壳结构有效地抑制了LMNPs的非均匀体积膨胀,使其从约160%膨胀到127%,提高了LMNPs的电导率,并表现出优异的电化学动力学和自愈现象。这项工作为高性能碱离子电池的室温液态金属阳极的应用铺平了道路。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alkali-Ion Batteries by Carbon Encapsulation of Liquid Metal Anode

Gallium-based metallic liquids, exhibiting high theoretical capacity, are considered a promising anode material for room-temperature liquid metal alkali-ion batteries. However, electrochemical performances, especially the cyclic stability, of the liquid metal anode for alkali-ion batteries are strongly limited because of the volume expansion and unstable solid electrolyte interphase film of liquid metal. Here, the bottleneck problem is resolved by designing carbon encapsulation on gallium–indium liquid metal nanoparticles (EGaIn@C LMNPs). A superior cycling stability (644 mAh g−1 after 800 cycles at 1.0 A g−1) is demonstrated for lithium-ion batteries, and excellent cycle stability (87 mAh g−1 after 2500 cycles at 1.0 A g−1) is achieved for sodium-ion batteries by carbon encapsulation of the liquid metal anode. Morphological and phase changes of EGaIn@C LMNPs during the electrochemical reaction process are revealed by in situ transmission electron microscopy measurements in real-time. The origin for the excellent performance is uncovered, that is the EGaIn@C core–shell structure effectively suppresses the non-uniform volume expansion of LMNPs from ≈160% to 127%, improves the electrical conductivity of the LMNPs, and exhibits superior electrochemical kinetics and a self-healing phenomenon. This work paves the way for the applications of room-temperature liquid metal anodes for high-performance alkali-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. Imaging Locally Inhomogeneous Properties of Metal Halide Perovskites. Intense Circular Dichroism and Spin Selectivity in AgBiS2 Nanocrystals by Chiral Ligand Exchange. Targeted Defect Repair and Multi-functional Interface Construction for the Direct Regeneration of Spent LiFePO4 Cathodes. 3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1