3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-10 DOI:10.1002/adma.202412127
Jinhong Jiang, Chenhui Yuan, Xinyu Zhang, Lin Gu, Yudong Yao, Xueping Wang, Yong He, Lei Shao
{"title":"3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath.","authors":"Jinhong Jiang, Chenhui Yuan, Xinyu Zhang, Lin Gu, Yudong Yao, Xueping Wang, Yong He, Lei Shao","doi":"10.1002/adma.202412127","DOIUrl":null,"url":null,"abstract":"<p><p>Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412127","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Embedded 3D bioprinting techniques have emerged as a powerful method to fabricate 3D engineered constructs using low strength bioinks; however, there are challenges in simultaneously satisfying the requirements of high-cell-activity, high-cell-proportion, and low-viscosity bioinks. In particular, the printing capacity of embedded 3D bioprinting is limited as two main challenges: spreading and diffusion, especially for liquid, high-cell-activity bioinks that can facilitate high-cell-proportion. Here, a liquid-in-liquid 3D bioprinting (LL3DBP) strategy is developed, which used a liquid granular bath to prevent the spreading of liquid bioinks during 3D printing, and electrostatic interaction between the liquid bioinks and liquid granular baths is found to effectively prevent the diffusion of liquid bioinks. As an example, the printing of positively charged 5% w/v gelatin methacryloyl (GelMA) in a liquid granular bath prepared with negatively charged κ-carrageenan is proved to be achievable. By LL3DBP, printing capacity is greatly advanced and bioinks with over 90% v/v cell can be printed, and printed structures with high-cell-proportion exhibit excellent bioactivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在液态颗粒浴中进行液态高细胞比例生物墨水的三维生物打印。
嵌入式三维生物打印技术已成为一种使用低强度生物墨水制造三维工程结构的强大方法;然而,要同时满足高细胞活性、高细胞比例和低粘度生物墨水的要求还存在挑战。特别是,嵌入式三维生物打印的打印能力受到两个主要挑战的限制:铺展和扩散,尤其是对于能促进高细胞比例的液态高细胞活性生物墨水而言。本文开发了一种液中液三维生物打印(LL3DBP)策略,利用液体颗粒浴防止液态生物墨水在三维打印过程中扩散,并发现液态生物墨水与液体颗粒浴之间的静电相互作用可有效防止液态生物墨水的扩散。例如,在用带负电荷的κ-卡拉胶制备的液体颗粒浴中打印带正电荷的5% w/v 甲基丙烯酰明胶(GelMA)证明是可行的。通过 LL3DBP,印刷能力大大提高,可印刷出 90% 以上 v/v 细胞的生物墨水,而且高细胞比例的印刷结构具有极佳的生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
3D Bioprinting of Liquid High-Cell-Proportion Bioinks in Liquid Granular Bath. A Self-Healing, Flowable, Yet Solid Electrolyte Suppresses Li-Metal Morphological Instabilities. Accelerating Li-Ion Diffusion in LiFePO4 by Polyanion Lattice Engineering. Domain Dynamics Response to Polarization Switching in Relaxor Ferroelectrics. Dual Fe/I Single-Atom Electrocatalyst for High-Performance Oxygen Reduction and Wide-Temperature Quasi-Solid-State Zn-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1