槲皮素结合大豆分离蛋白膜的结构、材料和抗菌性能及其分子对接的结合行为。

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2023-11-16 DOI:10.1002/bip.23569
Priya Rani, Piyush Kumar Yadav, Ajay Kumar Singh, Suman Nayak, K. Dinesh Kumar, Rakesh Kumar
{"title":"槲皮素结合大豆分离蛋白膜的结构、材料和抗菌性能及其分子对接的结合行为。","authors":"Priya Rani,&nbsp;Piyush Kumar Yadav,&nbsp;Ajay Kumar Singh,&nbsp;Suman Nayak,&nbsp;K. Dinesh Kumar,&nbsp;Rakesh Kumar","doi":"10.1002/bip.23569","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to investigate the three different methods for the fabrication of quercetin (1%–3% w/w of protein) incorporated soy protein isolate (SPI) films and their effect on material properties. The quercetin incorporated SPI films prepared by these methods were characterized by Fourier transform infrared (FTIR) spectroscopy, UV–Vis spectrophotometer, tensile properties, and water uptake and leaching properties. The cross-linking pattern was revealed by the FTIR spectrum that showed formation of an ester group because of interaction between the quercetin hydroxyl group and the carboxyl side chain of SPI amino acids. The tensile strength of SPI films were enhanced with the addition of quercetin as it increased to a maximum of 6.17 MPa while neat SPI film had tensile strength 4.13 MPa. The prepared films exhibit significant antibacterial activity against <i>Listeria monocytogenes</i> and <i>Escherichia coli.</i> The <i>In-silico</i> docking analysis demonstrates that covalent and non-covalent forces play crucial roles in binding interaction. It shows the formation of four hydrogen bonds, two salt bridges along with one pi-alkyl interaction. The simulation studies reflect the crucial amino acid residues involved in SPI-quercetin binding. The effect of quercetin binding with SPI on its stability and compactness is revealed by Root mean square deviation (RMSD) and radius of gyration studies.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, material and antibacterial properties of quercetin incorporated soy protein isolate films and its binding behavior through molecular docking\",\"authors\":\"Priya Rani,&nbsp;Piyush Kumar Yadav,&nbsp;Ajay Kumar Singh,&nbsp;Suman Nayak,&nbsp;K. Dinesh Kumar,&nbsp;Rakesh Kumar\",\"doi\":\"10.1002/bip.23569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to investigate the three different methods for the fabrication of quercetin (1%–3% w/w of protein) incorporated soy protein isolate (SPI) films and their effect on material properties. The quercetin incorporated SPI films prepared by these methods were characterized by Fourier transform infrared (FTIR) spectroscopy, UV–Vis spectrophotometer, tensile properties, and water uptake and leaching properties. The cross-linking pattern was revealed by the FTIR spectrum that showed formation of an ester group because of interaction between the quercetin hydroxyl group and the carboxyl side chain of SPI amino acids. The tensile strength of SPI films were enhanced with the addition of quercetin as it increased to a maximum of 6.17 MPa while neat SPI film had tensile strength 4.13 MPa. The prepared films exhibit significant antibacterial activity against <i>Listeria monocytogenes</i> and <i>Escherichia coli.</i> The <i>In-silico</i> docking analysis demonstrates that covalent and non-covalent forces play crucial roles in binding interaction. It shows the formation of four hydrogen bonds, two salt bridges along with one pi-alkyl interaction. The simulation studies reflect the crucial amino acid residues involved in SPI-quercetin binding. The effect of quercetin binding with SPI on its stability and compactness is revealed by Root mean square deviation (RMSD) and radius of gyration studies.</p>\",\"PeriodicalId\":8866,\"journal\":{\"name\":\"Biopolymers\",\"volume\":\"115 2\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopolymers\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bip.23569\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23569","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了槲皮素(1% ~ 3% w/w)大豆分离蛋白(SPI)膜的三种不同制备方法及其对材料性能的影响。采用傅里叶变换红外光谱(FTIR)、紫外可见分光光度计、拉伸性能、吸水浸出性能等对制备的槲皮素掺入SPI膜进行了表征。FTIR光谱显示槲皮素羟基与SPI氨基酸羧基侧链相互作用形成酯基。槲皮素的加入提高了SPI膜的抗拉强度,最高可达6.17 MPa,而纯SPI膜的抗拉强度为4.13 MPa。所制备的薄膜对单核增生李斯特菌和大肠杆菌具有明显的抑菌活性。硅对接分析表明,共价力和非共价力在结合相互作用中起关键作用。它显示了四个氢键的形成,两个盐桥以及一个pi-烷基相互作用。模拟研究反映了参与spi -槲皮素结合的关键氨基酸残基。通过均方根偏差(RMSD)和旋转半径研究揭示了槲皮素与SPI结合对其稳定性和致密性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural, material and antibacterial properties of quercetin incorporated soy protein isolate films and its binding behavior through molecular docking

This study aimed to investigate the three different methods for the fabrication of quercetin (1%–3% w/w of protein) incorporated soy protein isolate (SPI) films and their effect on material properties. The quercetin incorporated SPI films prepared by these methods were characterized by Fourier transform infrared (FTIR) spectroscopy, UV–Vis spectrophotometer, tensile properties, and water uptake and leaching properties. The cross-linking pattern was revealed by the FTIR spectrum that showed formation of an ester group because of interaction between the quercetin hydroxyl group and the carboxyl side chain of SPI amino acids. The tensile strength of SPI films were enhanced with the addition of quercetin as it increased to a maximum of 6.17 MPa while neat SPI film had tensile strength 4.13 MPa. The prepared films exhibit significant antibacterial activity against Listeria monocytogenes and Escherichia coli. The In-silico docking analysis demonstrates that covalent and non-covalent forces play crucial roles in binding interaction. It shows the formation of four hydrogen bonds, two salt bridges along with one pi-alkyl interaction. The simulation studies reflect the crucial amino acid residues involved in SPI-quercetin binding. The effect of quercetin binding with SPI on its stability and compactness is revealed by Root mean square deviation (RMSD) and radius of gyration studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Issue Information 3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect. 3D Printable Alginate-Chitosan Hydrogel Loaded With Ketoconazole Exhibits Anticryptococcal Activity. Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1