奶酪在冷冻和冷藏过程中的冰结晶和结构变化:对功能特性的影响。

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Critical reviews in food science and nutrition Pub Date : 2025-01-01 Epub Date: 2023-11-16 DOI:10.1080/10408398.2023.2277357
Digvijay, Alan L Kelly, Prabin Lamichhane
{"title":"奶酪在冷冻和冷藏过程中的冰结晶和结构变化:对功能特性的影响。","authors":"Digvijay, Alan L Kelly, Prabin Lamichhane","doi":"10.1080/10408398.2023.2277357","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature-mediated preservation techniques offer a simple, scalable, effective, and fairly efficient method of long-term storage of food products. In order to ensure the uninterrupted availability of cheese across the globe, a critical understanding of its techno-functional properties as affected by freezing and frozen storage is essential. Detailed studies of temperature-mediated molecular dynamics are available for relatively simpler and homogeneous systems like pure water, proteins, and carbohydrates. However, for heterogeneous systems like cheese, inter-component interactions at sub-zero temperatures have not been extensively covered. Ice crystallization during freezing causes dehydration of caseins and the formation of concentration gradients within the cheese matrix, causing undesirable changes in texture-functional attributes, but findings vary due to experimental conditions. A suitable combination of sample size, freezing rate, aging, and tempering can extend the shelf life of high- and low-moisture Mozzarella cheese. However, limited studies on other cheeses suggest that effects and suitability differ by cheese type, in most cases adversely affecting texture and functional attributes. This review presents an overview of the understanding of the effects of refrigeration, freezing techniques, and frozen storage on structural components of cheese, most prominently Mozzarella cheese, and the corresponding impact on microstructure and functionality. Also included are the mechanism of ice formation and relevant mathematical models for estimation of the thermophysical properties of cheese to assist in designing optimized schemes for their frozen storage. The review also highlights the lack of unanimity in critical understanding concerning the effect of freezing on the long-term storage of Mozzarella cheese with respect to its functionality.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"527-550"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ice crystallization and structural changes in cheese during freezing and frozen storage: implications for functional properties.\",\"authors\":\"Digvijay, Alan L Kelly, Prabin Lamichhane\",\"doi\":\"10.1080/10408398.2023.2277357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature-mediated preservation techniques offer a simple, scalable, effective, and fairly efficient method of long-term storage of food products. In order to ensure the uninterrupted availability of cheese across the globe, a critical understanding of its techno-functional properties as affected by freezing and frozen storage is essential. Detailed studies of temperature-mediated molecular dynamics are available for relatively simpler and homogeneous systems like pure water, proteins, and carbohydrates. However, for heterogeneous systems like cheese, inter-component interactions at sub-zero temperatures have not been extensively covered. Ice crystallization during freezing causes dehydration of caseins and the formation of concentration gradients within the cheese matrix, causing undesirable changes in texture-functional attributes, but findings vary due to experimental conditions. A suitable combination of sample size, freezing rate, aging, and tempering can extend the shelf life of high- and low-moisture Mozzarella cheese. However, limited studies on other cheeses suggest that effects and suitability differ by cheese type, in most cases adversely affecting texture and functional attributes. This review presents an overview of the understanding of the effects of refrigeration, freezing techniques, and frozen storage on structural components of cheese, most prominently Mozzarella cheese, and the corresponding impact on microstructure and functionality. Also included are the mechanism of ice formation and relevant mathematical models for estimation of the thermophysical properties of cheese to assist in designing optimized schemes for their frozen storage. The review also highlights the lack of unanimity in critical understanding concerning the effect of freezing on the long-term storage of Mozzarella cheese with respect to its functionality.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"527-550\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2023.2277357\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2023.2277357","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

温度介导保存技术提供了一种简单、可扩展、有效且相当高效的食品长期储存方法。为了确保奶酪在全球范围内的不间断供应,对其受冷冻和冷冻储存影响的技术功能特性的批判性理解至关重要。温度介导的分子动力学的详细研究可用于相对简单和均匀的系统,如纯水,蛋白质和碳水化合物。然而,对于像奶酪这样的异质系统,组分间在零下温度下的相互作用还没有得到广泛的研究。冷冻过程中的冰结晶会导致酪蛋白脱水,并在奶酪基质中形成浓度梯度,从而导致质地功能属性的不良变化,但实验结果因实验条件而异。适当的样品大小、冷冻速率、陈化和回火组合可以延长高水分和低水分马苏里拉奶酪的保质期。然而,对其他奶酪的有限研究表明,奶酪的效果和适用性因奶酪类型而异,在大多数情况下会对质地和功能属性产生不利影响。这篇综述概述了冷藏、冷冻技术和冷冻储存对奶酪(尤其是马苏里拉奶酪)结构成分的影响,以及对其微观结构和功能的相应影响。还包括冰的形成机制和估算奶酪热物理性质的相关数学模型,以帮助设计其冷冻储存的优化方案。该综述还强调,在冷冻对马苏里拉奶酪长期储存的影响方面,对其功能的批判性理解缺乏一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ice crystallization and structural changes in cheese during freezing and frozen storage: implications for functional properties.

Temperature-mediated preservation techniques offer a simple, scalable, effective, and fairly efficient method of long-term storage of food products. In order to ensure the uninterrupted availability of cheese across the globe, a critical understanding of its techno-functional properties as affected by freezing and frozen storage is essential. Detailed studies of temperature-mediated molecular dynamics are available for relatively simpler and homogeneous systems like pure water, proteins, and carbohydrates. However, for heterogeneous systems like cheese, inter-component interactions at sub-zero temperatures have not been extensively covered. Ice crystallization during freezing causes dehydration of caseins and the formation of concentration gradients within the cheese matrix, causing undesirable changes in texture-functional attributes, but findings vary due to experimental conditions. A suitable combination of sample size, freezing rate, aging, and tempering can extend the shelf life of high- and low-moisture Mozzarella cheese. However, limited studies on other cheeses suggest that effects and suitability differ by cheese type, in most cases adversely affecting texture and functional attributes. This review presents an overview of the understanding of the effects of refrigeration, freezing techniques, and frozen storage on structural components of cheese, most prominently Mozzarella cheese, and the corresponding impact on microstructure and functionality. Also included are the mechanism of ice formation and relevant mathematical models for estimation of the thermophysical properties of cheese to assist in designing optimized schemes for their frozen storage. The review also highlights the lack of unanimity in critical understanding concerning the effect of freezing on the long-term storage of Mozzarella cheese with respect to its functionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
期刊最新文献
Innovative applications of bio-inspired technology in bio-based food packaging. Seaweeds-derived proteins and peptides: preparation, virtual screening, health-promoting effects, and industry applications. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. A critical review of synthetic novel foods within the European regulation: proposed classification, toxicological concerns and potential health claims. Plant-based cheese analogs: structure, texture, and functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1