{"title":"基于前馈神经网络和深度自编码器的circrna -疾病关联预测。","authors":"Hacer Turgut, Beste Turanli, Betül Boz","doi":"10.1007/s12539-023-00590-y","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA is a single-stranded RNA with a closed-loop structure. In recent years, academic research has revealed that circular RNAs play critical roles in biological processes and are related to human diseases. The discovery of potential circRNAs as disease biomarkers and drug targets is crucial since it can help diagnose diseases in the early stages and be used to treat people. However, in conventional experimental methods, conducting experiments to detect associations between circular RNAs and diseases is time-consuming and costly. To overcome this problem, various computational methodologies are proposed to extract essential features for both circular RNAs and diseases and predict the associations. Studies showed that computational methods successfully predicted performance and made it possible to detect possible highly related circular RNAs for diseases. This study proposes a deep learning-based circRNA-disease association predictor methodology called DCDA, which uses multiple data sources to create circRNA and disease features and reveal hidden feature codings of a circular RNA-disease pair with a deep autoencoder, then predict the relation score of the pair by a deep neural network. Fivefold cross-validation results on the benchmark dataset showed that our model outperforms state-of-the-art prediction methods in the literature with the AUC score of 0.9794.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"91-103"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder.\",\"authors\":\"Hacer Turgut, Beste Turanli, Betül Boz\",\"doi\":\"10.1007/s12539-023-00590-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA is a single-stranded RNA with a closed-loop structure. In recent years, academic research has revealed that circular RNAs play critical roles in biological processes and are related to human diseases. The discovery of potential circRNAs as disease biomarkers and drug targets is crucial since it can help diagnose diseases in the early stages and be used to treat people. However, in conventional experimental methods, conducting experiments to detect associations between circular RNAs and diseases is time-consuming and costly. To overcome this problem, various computational methodologies are proposed to extract essential features for both circular RNAs and diseases and predict the associations. Studies showed that computational methods successfully predicted performance and made it possible to detect possible highly related circular RNAs for diseases. This study proposes a deep learning-based circRNA-disease association predictor methodology called DCDA, which uses multiple data sources to create circRNA and disease features and reveal hidden feature codings of a circular RNA-disease pair with a deep autoencoder, then predict the relation score of the pair by a deep neural network. Fivefold cross-validation results on the benchmark dataset showed that our model outperforms state-of-the-art prediction methods in the literature with the AUC score of 0.9794.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"91-103\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00590-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00590-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
DCDA: CircRNA-Disease Association Prediction with Feed-Forward Neural Network and Deep Autoencoder.
Circular RNA is a single-stranded RNA with a closed-loop structure. In recent years, academic research has revealed that circular RNAs play critical roles in biological processes and are related to human diseases. The discovery of potential circRNAs as disease biomarkers and drug targets is crucial since it can help diagnose diseases in the early stages and be used to treat people. However, in conventional experimental methods, conducting experiments to detect associations between circular RNAs and diseases is time-consuming and costly. To overcome this problem, various computational methodologies are proposed to extract essential features for both circular RNAs and diseases and predict the associations. Studies showed that computational methods successfully predicted performance and made it possible to detect possible highly related circular RNAs for diseases. This study proposes a deep learning-based circRNA-disease association predictor methodology called DCDA, which uses multiple data sources to create circRNA and disease features and reveal hidden feature codings of a circular RNA-disease pair with a deep autoencoder, then predict the relation score of the pair by a deep neural network. Fivefold cross-validation results on the benchmark dataset showed that our model outperforms state-of-the-art prediction methods in the literature with the AUC score of 0.9794.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.