Sriharsha Marupudi, Qian Cao, Ravi Samala, Nicholas Petrick
{"title":"利用增材制造和有限元分析表征机械刚度:骨骼健康评估的潜在工具。","authors":"Sriharsha Marupudi, Qian Cao, Ravi Samala, Nicholas Petrick","doi":"10.1186/s41205-023-00197-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone health and fracture risk are known to be correlated with stiffness. Both micro-finite element analysis (μFEA) and mechanical testing of additive manufactured phantoms are useful approaches for estimating mechanical properties of trabecular bone-like structures. However, it is unclear if measurements from the two approaches are consistent. The purpose of this work is to evaluate the agreement between stiffness measurements obtained from mechanical testing of additive manufactured trabecular bone phantoms and μFEA modeling. Agreement between the two methods would suggest 3D printing is a viable method for validation of μFEA modeling.</p><p><strong>Methods: </strong>A set of 20 lumbar vertebrae regions of interests were segmented and the corresponding trabecular bone phantoms were produced using selective laser sintering. The phantoms were mechanically tested in uniaxial compression to derive their stiffness values. The stiffness values were also derived from in silico simulation, where linear elastic μFEA was applied to simulate the same compression and boundary conditions. Bland-Altman analysis was used to evaluate agreement between the mechanical testing and μFEA simulation values. Additionally, we evaluated the fidelity of the 3D printed phantoms as well as the repeatability of the 3D printing and mechanical testing process.</p><p><strong>Results: </strong>We observed good agreement between the mechanically tested stiffness and μFEA stiffness, with R<sup>2</sup> of 0.84 and normalized root mean square deviation of 8.1%. We demonstrate that the overall trabecular bone structures are printed in high fidelity (Dice score of 0.97 (95% CI, [0.96,0.98]) and that mechanical testing is repeatable (coefficient of variation less than 5% for stiffness values from testing of duplicated phantoms). However, we noticed some defects in the resin microstructure of the 3D printed phantoms, which may account for the discrepancy between the stiffness values from simulation and mechanical testing.</p><p><strong>Conclusion: </strong>Overall, the level of agreement achieved between the mechanical stiffness and μFEA indicates that our μFEA methods may be acceptable for assessing bone mechanics of complex trabecular structures as part of an analysis of overall bone health.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of mechanical stiffness using additive manufacturing and finite element analysis: potential tool for bone health assessment.\",\"authors\":\"Sriharsha Marupudi, Qian Cao, Ravi Samala, Nicholas Petrick\",\"doi\":\"10.1186/s41205-023-00197-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bone health and fracture risk are known to be correlated with stiffness. Both micro-finite element analysis (μFEA) and mechanical testing of additive manufactured phantoms are useful approaches for estimating mechanical properties of trabecular bone-like structures. However, it is unclear if measurements from the two approaches are consistent. The purpose of this work is to evaluate the agreement between stiffness measurements obtained from mechanical testing of additive manufactured trabecular bone phantoms and μFEA modeling. Agreement between the two methods would suggest 3D printing is a viable method for validation of μFEA modeling.</p><p><strong>Methods: </strong>A set of 20 lumbar vertebrae regions of interests were segmented and the corresponding trabecular bone phantoms were produced using selective laser sintering. The phantoms were mechanically tested in uniaxial compression to derive their stiffness values. The stiffness values were also derived from in silico simulation, where linear elastic μFEA was applied to simulate the same compression and boundary conditions. Bland-Altman analysis was used to evaluate agreement between the mechanical testing and μFEA simulation values. Additionally, we evaluated the fidelity of the 3D printed phantoms as well as the repeatability of the 3D printing and mechanical testing process.</p><p><strong>Results: </strong>We observed good agreement between the mechanically tested stiffness and μFEA stiffness, with R<sup>2</sup> of 0.84 and normalized root mean square deviation of 8.1%. We demonstrate that the overall trabecular bone structures are printed in high fidelity (Dice score of 0.97 (95% CI, [0.96,0.98]) and that mechanical testing is repeatable (coefficient of variation less than 5% for stiffness values from testing of duplicated phantoms). However, we noticed some defects in the resin microstructure of the 3D printed phantoms, which may account for the discrepancy between the stiffness values from simulation and mechanical testing.</p><p><strong>Conclusion: </strong>Overall, the level of agreement achieved between the mechanical stiffness and μFEA indicates that our μFEA methods may be acceptable for assessing bone mechanics of complex trabecular structures as part of an analysis of overall bone health.</p>\",\"PeriodicalId\":72036,\"journal\":{\"name\":\"3D printing in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D printing in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41205-023-00197-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-023-00197-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Characterization of mechanical stiffness using additive manufacturing and finite element analysis: potential tool for bone health assessment.
Background: Bone health and fracture risk are known to be correlated with stiffness. Both micro-finite element analysis (μFEA) and mechanical testing of additive manufactured phantoms are useful approaches for estimating mechanical properties of trabecular bone-like structures. However, it is unclear if measurements from the two approaches are consistent. The purpose of this work is to evaluate the agreement between stiffness measurements obtained from mechanical testing of additive manufactured trabecular bone phantoms and μFEA modeling. Agreement between the two methods would suggest 3D printing is a viable method for validation of μFEA modeling.
Methods: A set of 20 lumbar vertebrae regions of interests were segmented and the corresponding trabecular bone phantoms were produced using selective laser sintering. The phantoms were mechanically tested in uniaxial compression to derive their stiffness values. The stiffness values were also derived from in silico simulation, where linear elastic μFEA was applied to simulate the same compression and boundary conditions. Bland-Altman analysis was used to evaluate agreement between the mechanical testing and μFEA simulation values. Additionally, we evaluated the fidelity of the 3D printed phantoms as well as the repeatability of the 3D printing and mechanical testing process.
Results: We observed good agreement between the mechanically tested stiffness and μFEA stiffness, with R2 of 0.84 and normalized root mean square deviation of 8.1%. We demonstrate that the overall trabecular bone structures are printed in high fidelity (Dice score of 0.97 (95% CI, [0.96,0.98]) and that mechanical testing is repeatable (coefficient of variation less than 5% for stiffness values from testing of duplicated phantoms). However, we noticed some defects in the resin microstructure of the 3D printed phantoms, which may account for the discrepancy between the stiffness values from simulation and mechanical testing.
Conclusion: Overall, the level of agreement achieved between the mechanical stiffness and μFEA indicates that our μFEA methods may be acceptable for assessing bone mechanics of complex trabecular structures as part of an analysis of overall bone health.