改进的全因子深度信息挖掘算法研究

Yun Man , Xu Fei , Liu Jun , Zhang Qian
{"title":"改进的全因子深度信息挖掘算法研究","authors":"Yun Man ,&nbsp;Xu Fei ,&nbsp;Liu Jun ,&nbsp;Zhang Qian","doi":"10.1016/j.cogr.2022.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 30-38"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000015/pdfft?md5=0dd4e3a0dc308e9e12201330a7437e1f&pid=1-s2.0-S2667241322000015-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research on improved full-factor deep information mining algorithm\",\"authors\":\"Yun Man ,&nbsp;Xu Fei ,&nbsp;Liu Jun ,&nbsp;Zhang Qian\",\"doi\":\"10.1016/j.cogr.2022.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 30-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000015/pdfft?md5=0dd4e3a0dc308e9e12201330a7437e1f&pid=1-s2.0-S2667241322000015-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241322000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在利用消防物理平台进行火灾报警数据相关性分析时,往往存在数据量过大、分析结果准确性不足等问题。针对这些问题,本文基于相关分析算法和聚类算法,建立了基于火灾大数据的火灾事故全因素二次挖掘机制。利用关联算法对数据仓库中的火灾相关因素进行全因素初级挖掘,提取关联规则中的常识性事故属性。然后使用K-means聚类算法,其中聚类中心为火灾事故记录中的相关属性,对事故要素进行第二次联合聚类,实现对火灾事故各因素的深度信息挖掘。实验结果表明,与传统的单一挖掘算法相比,本文提出的改进的全因子深度信息挖掘算法能有效过滤掉31.6%的无意义挖掘结果。结果表明,本文算法能够更准确地挖掘出数据之间的关系,能够为消防管理等工作提供更有效的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on improved full-factor deep information mining algorithm

In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Optimizing Food Sample Handling and Placement Pattern Recognition with YOLO: Advanced Techniques in Robotic Object Detection Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) Scalable and cohesive swarm control based on reinforcement learning POMDP-based probabilistic decision making for path planning in wheeled mobile robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1