{"title":"改进的全因子深度信息挖掘算法研究","authors":"Yun Man , Xu Fei , Liu Jun , Zhang Qian","doi":"10.1016/j.cogr.2022.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 30-38"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000015/pdfft?md5=0dd4e3a0dc308e9e12201330a7437e1f&pid=1-s2.0-S2667241322000015-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research on improved full-factor deep information mining algorithm\",\"authors\":\"Yun Man , Xu Fei , Liu Jun , Zhang Qian\",\"doi\":\"10.1016/j.cogr.2022.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 30-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000015/pdfft?md5=0dd4e3a0dc308e9e12201330a7437e1f&pid=1-s2.0-S2667241322000015-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667241322000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241322000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on improved full-factor deep information mining algorithm
In the use of fire-fighting physics platform for fire alarm data correlation analysis, there are often problems such as too much data volume and insufficient accuracy of the analysis results. For such questions, this paper establishes a full-factor secondary mining mechanism for fire accidents based on the fire big data based on the correlation analysis algorithm and the clustering algorithm. The association algorithm is used to conduct full-factor primary mining on the fire-related factors in the data warehouse, and the common-sense accident attributes in the association rules are extracted. Then use the K-means clustering algorithm, where the cluster center is the relevant attribute in the fire accident record, and perform the second combined clustering of the accident elements to achieve in-depth information mining of all factors of the fire accident. Experimental results show that the improved full-factor deep information mining algorithm proposed in this paper can effectively filter 31.6% of meaningless mining results compared to the traditional single mining algorithm. It shows that the algorithm in this paper can more accurately dig out the relationship between data, and can provide more effective decision support for fire management and other work.