外圆插拔磨削过程中修整参数对轴封端面微铅形成的影响

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2022-11-01 DOI:10.1016/j.aime.2022.100098
Jannik Röttger , Thomas Bergs , Sebastian Barth , Matthias Baumann , Frank Bauer
{"title":"外圆插拔磨削过程中修整参数对轴封端面微铅形成的影响","authors":"Jannik Röttger ,&nbsp;Thomas Bergs ,&nbsp;Sebastian Barth ,&nbsp;Matthias Baumann ,&nbsp;Frank Bauer","doi":"10.1016/j.aime.2022.100098","DOIUrl":null,"url":null,"abstract":"<div><p>The function of radial sealing systems depends significantly on the shaft counterface. External cylindrical plunge grinding is considered the standard for the manufacturing of suitable shaft counterfaces. It creates a stochastic surface texture with many anisotropic groove-like grinding structures, oriented in the circumferential direction of the shaft. The structures are created by the grain engagement into the workpiece during the grinding process. This surface characteristic exhibits optimal properties for hydrodynamic lubrication between the seal and the shaft. Although there is no axial relative movement between grinding wheel and workpiece in plunge grinding, under unfavorable conditions grinding structures can be produced that deviate from the circumferential direction. These structures then transport fluid through the sealing during rotation. Structures, that cause fluid transportation because of inclined orientation to the circumferential direction, are referred to as micro lead. Especially for high rotational speeds, e.g. in electric powertrains, micro lead causes high pumping effects and therefore leakage and following failure of products. This publication presents findings on the influence of the dressing parameters on the formation of micro lead during external cylindrical plunge grinding. The experimental investigations show that especially negative dressing speed ratios lead to the formation of micro lead structures.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"5 ","pages":"Article 100098"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000253/pdfft?md5=2d8b7a524c0ea4fd823350967a52bcbe&pid=1-s2.0-S2666912922000253-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of dressing parameters on the formation of micro lead on shaft sealing counterfaces during external cylindrical plunge grinding\",\"authors\":\"Jannik Röttger ,&nbsp;Thomas Bergs ,&nbsp;Sebastian Barth ,&nbsp;Matthias Baumann ,&nbsp;Frank Bauer\",\"doi\":\"10.1016/j.aime.2022.100098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The function of radial sealing systems depends significantly on the shaft counterface. External cylindrical plunge grinding is considered the standard for the manufacturing of suitable shaft counterfaces. It creates a stochastic surface texture with many anisotropic groove-like grinding structures, oriented in the circumferential direction of the shaft. The structures are created by the grain engagement into the workpiece during the grinding process. This surface characteristic exhibits optimal properties for hydrodynamic lubrication between the seal and the shaft. Although there is no axial relative movement between grinding wheel and workpiece in plunge grinding, under unfavorable conditions grinding structures can be produced that deviate from the circumferential direction. These structures then transport fluid through the sealing during rotation. Structures, that cause fluid transportation because of inclined orientation to the circumferential direction, are referred to as micro lead. Especially for high rotational speeds, e.g. in electric powertrains, micro lead causes high pumping effects and therefore leakage and following failure of products. This publication presents findings on the influence of the dressing parameters on the formation of micro lead during external cylindrical plunge grinding. The experimental investigations show that especially negative dressing speed ratios lead to the formation of micro lead structures.</p></div>\",\"PeriodicalId\":34573,\"journal\":{\"name\":\"Advances in Industrial and Manufacturing Engineering\",\"volume\":\"5 \",\"pages\":\"Article 100098\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000253/pdfft?md5=2d8b7a524c0ea4fd823350967a52bcbe&pid=1-s2.0-S2666912922000253-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Industrial and Manufacturing Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666912922000253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

径向密封系统的功能在很大程度上取决于轴面。外圆切入磨削被认为是制造合适的轴面的标准。它创造了一个随机的表面纹理,具有许多各向异性的沟槽状磨削结构,在轴的周向取向。这些结构是在磨削过程中由晶粒与工件接合而产生的。这种表面特性表现出密封和轴之间流体动力润滑的最佳性能。在切入磨削中,虽然砂轮与工件之间不存在轴向相对运动,但在不利的条件下,可以产生偏离周向的磨削结构。然后这些结构在旋转过程中通过密封件输送流体。由于向周向倾斜而引起流体输送的结构称为微引线。特别是对于高转速,例如在电力传动系统中,微铅会导致高泵效应,因此会导致泄漏和产品故障。本文介绍了在外圆切入磨削过程中,修整参数对微量铅形成的影响。实验研究表明,特别是负修整速比会导致微细铅结构的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of dressing parameters on the formation of micro lead on shaft sealing counterfaces during external cylindrical plunge grinding

The function of radial sealing systems depends significantly on the shaft counterface. External cylindrical plunge grinding is considered the standard for the manufacturing of suitable shaft counterfaces. It creates a stochastic surface texture with many anisotropic groove-like grinding structures, oriented in the circumferential direction of the shaft. The structures are created by the grain engagement into the workpiece during the grinding process. This surface characteristic exhibits optimal properties for hydrodynamic lubrication between the seal and the shaft. Although there is no axial relative movement between grinding wheel and workpiece in plunge grinding, under unfavorable conditions grinding structures can be produced that deviate from the circumferential direction. These structures then transport fluid through the sealing during rotation. Structures, that cause fluid transportation because of inclined orientation to the circumferential direction, are referred to as micro lead. Especially for high rotational speeds, e.g. in electric powertrains, micro lead causes high pumping effects and therefore leakage and following failure of products. This publication presents findings on the influence of the dressing parameters on the formation of micro lead during external cylindrical plunge grinding. The experimental investigations show that especially negative dressing speed ratios lead to the formation of micro lead structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior Erratum to “Influence of changing loading directions on damage in sheet metal forming” [Adv. Ind. Manuf. Eng. 8 (2024) 100139] Modeling of equivalent strain in 2D cross-sections of open die forged components using neural networks Influence on micro-geometry and surface characteristics of laser powder bed fusion built 17-4 PH miniature spur gears in laser shock peening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1