{"title":"结合MobileNetV1和深度可分离卷积瓶颈扩展进行鱼眼新鲜度分类","authors":"Eko Prasetyo , Rani Purbaningtyas , Raden Dimas Adityo , Nanik Suciati , Chastine Fatichah","doi":"10.1016/j.inpa.2022.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Image classification using Convolutional Neural Network (CNN) achieves optimal performance with a particular strategy. MobileNet reduces the parameter number for learning features by switching from the standard convolution paradigm to the depthwise separable convolution (DSC) paradigm. However, there are not enough features to learn for identifying the freshness of fish eyes. Furthermore, minor variances in features should not require complicated CNN architecture. In this paper, our first contribution proposed DSC Bottleneck with Expansion for learning features of the freshness of fish eyes with a Bottleneck Multiplier. The second contribution proposed Residual Transition to bridge current feature maps and skip connection feature maps to the next convolution block. The third contribution proposed MobileNetV1 Bottleneck with Expansion (MB-BE) for classifying the freshness of fish eyes. The result obtained from the Freshness of the Fish Eyes dataset shows that MB-BE outperformed other models such as original MobileNet, VGG16, Densenet, Nasnet Mobile with 63.21% accuracy.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 485-496"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000026/pdfft?md5=64f3cd6f2991cf4a7c2f37bdf68664d1&pid=1-s2.0-S2214317322000026-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes\",\"authors\":\"Eko Prasetyo , Rani Purbaningtyas , Raden Dimas Adityo , Nanik Suciati , Chastine Fatichah\",\"doi\":\"10.1016/j.inpa.2022.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image classification using Convolutional Neural Network (CNN) achieves optimal performance with a particular strategy. MobileNet reduces the parameter number for learning features by switching from the standard convolution paradigm to the depthwise separable convolution (DSC) paradigm. However, there are not enough features to learn for identifying the freshness of fish eyes. Furthermore, minor variances in features should not require complicated CNN architecture. In this paper, our first contribution proposed DSC Bottleneck with Expansion for learning features of the freshness of fish eyes with a Bottleneck Multiplier. The second contribution proposed Residual Transition to bridge current feature maps and skip connection feature maps to the next convolution block. The third contribution proposed MobileNetV1 Bottleneck with Expansion (MB-BE) for classifying the freshness of fish eyes. The result obtained from the Freshness of the Fish Eyes dataset shows that MB-BE outperformed other models such as original MobileNet, VGG16, Densenet, Nasnet Mobile with 63.21% accuracy.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"9 4\",\"pages\":\"Pages 485-496\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214317322000026/pdfft?md5=64f3cd6f2991cf4a7c2f37bdf68664d1&pid=1-s2.0-S2214317322000026-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317322000026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining MobileNetV1 and Depthwise Separable convolution bottleneck with Expansion for classifying the freshness of fish eyes
Image classification using Convolutional Neural Network (CNN) achieves optimal performance with a particular strategy. MobileNet reduces the parameter number for learning features by switching from the standard convolution paradigm to the depthwise separable convolution (DSC) paradigm. However, there are not enough features to learn for identifying the freshness of fish eyes. Furthermore, minor variances in features should not require complicated CNN architecture. In this paper, our first contribution proposed DSC Bottleneck with Expansion for learning features of the freshness of fish eyes with a Bottleneck Multiplier. The second contribution proposed Residual Transition to bridge current feature maps and skip connection feature maps to the next convolution block. The third contribution proposed MobileNetV1 Bottleneck with Expansion (MB-BE) for classifying the freshness of fish eyes. The result obtained from the Freshness of the Fish Eyes dataset shows that MB-BE outperformed other models such as original MobileNet, VGG16, Densenet, Nasnet Mobile with 63.21% accuracy.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining