共用铁路走廊相邻轨道事故半定量风险评估

Chen-Yu Lin , M. Rapik Saat , Christopher P.L. Barkan
{"title":"共用铁路走廊相邻轨道事故半定量风险评估","authors":"Chen-Yu Lin ,&nbsp;M. Rapik Saat ,&nbsp;Christopher P.L. Barkan","doi":"10.1016/j.jrtpm.2022.100355","DOIUrl":null,"url":null,"abstract":"<div><p>There are several safety questions associated with operating passenger trains and freight trains on shared-use rail corridors (SRCs). Among them are adjacent track accidents (ATA) in which derailed railroad equipment intrudes upon (“fouls”) adjacent tracks and is struck by another train on adjacent tracks. ATAs can occur in any multiple track territory<span><span>, but they become more complex and potentially more hazardous on SRCs. ATAs can be broken down into three principal events: the initial derailment, an intrusion, and a train present on an adjacent track. Previous research established a foundation for addressing intrusion risk by qualitatively identifying the risk and potential mitigation measures and conducting preliminary quantitative intrusion probability analysis; however, a gap remains between current research on intrusion risk and a comprehensive risk assessment model for ATAs. This paper presents an index-based, semi-quantitative </span>risk analysis framework to evaluate probability and consequence of ATAs. A new risk index system was developed to evaluate ATA risk by assigning levels of probability to the three principal events and the overall ATA consequence level to different track segments, thereby enabling comparison of relative ATA risk among these track segments. The levels of ATA probability and consequence are determined by various infrastructure, rolling stock, and operational factors identified in this research where each factor contributes risk scores that can be summed and converted to levels of probability and consequence. The magnitude of risk due to each factor is determined by their effect, i.e., whether it increases or decreases the probability and/or consequence. A case study based on a 320-km, modified real-world SRC is presented to demonstrate and validate the model. Higher operating speed, lack of containment or barriers, and higher initial derailment rate all significantly affect ATA risk. The model enables comparisons of the relative ATA risks among different track segments at a resolution not previously achieved. It can also be used to locate high-risk locations (risk hotspots) on a railroad corridor where ATA risk is high. This model also provides information pertinent to future improvements in quantification of ATA risk and research on mitigation measures.</span></p></div>","PeriodicalId":51821,"journal":{"name":"Journal of Rail Transport Planning & Management","volume":"24 ","pages":"Article 100355"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-quantitative risk assessment of adjacent track accidents on shared-use rail corridors\",\"authors\":\"Chen-Yu Lin ,&nbsp;M. Rapik Saat ,&nbsp;Christopher P.L. Barkan\",\"doi\":\"10.1016/j.jrtpm.2022.100355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are several safety questions associated with operating passenger trains and freight trains on shared-use rail corridors (SRCs). Among them are adjacent track accidents (ATA) in which derailed railroad equipment intrudes upon (“fouls”) adjacent tracks and is struck by another train on adjacent tracks. ATAs can occur in any multiple track territory<span><span>, but they become more complex and potentially more hazardous on SRCs. ATAs can be broken down into three principal events: the initial derailment, an intrusion, and a train present on an adjacent track. Previous research established a foundation for addressing intrusion risk by qualitatively identifying the risk and potential mitigation measures and conducting preliminary quantitative intrusion probability analysis; however, a gap remains between current research on intrusion risk and a comprehensive risk assessment model for ATAs. This paper presents an index-based, semi-quantitative </span>risk analysis framework to evaluate probability and consequence of ATAs. A new risk index system was developed to evaluate ATA risk by assigning levels of probability to the three principal events and the overall ATA consequence level to different track segments, thereby enabling comparison of relative ATA risk among these track segments. The levels of ATA probability and consequence are determined by various infrastructure, rolling stock, and operational factors identified in this research where each factor contributes risk scores that can be summed and converted to levels of probability and consequence. The magnitude of risk due to each factor is determined by their effect, i.e., whether it increases or decreases the probability and/or consequence. A case study based on a 320-km, modified real-world SRC is presented to demonstrate and validate the model. Higher operating speed, lack of containment or barriers, and higher initial derailment rate all significantly affect ATA risk. The model enables comparisons of the relative ATA risks among different track segments at a resolution not previously achieved. It can also be used to locate high-risk locations (risk hotspots) on a railroad corridor where ATA risk is high. This model also provides information pertinent to future improvements in quantification of ATA risk and research on mitigation measures.</span></p></div>\",\"PeriodicalId\":51821,\"journal\":{\"name\":\"Journal of Rail Transport Planning & Management\",\"volume\":\"24 \",\"pages\":\"Article 100355\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rail Transport Planning & Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210970622000555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rail Transport Planning & Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210970622000555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

在共用铁路走廊(src)上运行客运列车和货运列车存在几个安全问题。其中包括相邻轨道事故(ATA),即脱轨的铁路设备侵入(“犯规”)相邻轨道,并被相邻轨道上的另一列火车撞击。ATAs可以发生在任何多轨道区域,但它们在src上变得更加复杂和潜在更危险。自动驾驶事故可以分为三个主要事件:最初的脱轨、一次入侵和一列火车出现在相邻的轨道上。以往的研究通过定性识别入侵风险和潜在的缓解措施,并进行初步的入侵概率定量分析,为解决入侵风险奠定了基础;然而,目前对入侵风险的研究与全面的入侵风险评估模型之间还存在一定的差距。本文提出了一种基于指标的半定量风险分析框架,用于评估ATAs发生的概率和后果。通过对三个主要事件的概率划分和对不同轨道段的ATA总体后果划分,建立了新的ATA风险评价指标体系,从而对不同轨道段的ATA相对风险进行比较。ATA概率和后果的水平是由本研究中确定的各种基础设施、铁路车辆和操作因素决定的,其中每个因素都贡献了风险分数,可以将其相加并转换为概率和后果的水平。由每个因素引起的风险的大小取决于它们的影响,即它是增加还是减少了概率和/或后果。最后,以320公里高速公路为例,对该模型进行了验证。较高的运行速度、缺乏遏制或屏障以及较高的初始脱轨率都会显著影响ATA风险。该模型能够以前所未有的分辨率比较不同轨道段之间的相对ATA风险。它还可以用于定位铁路走廊上ATA风险高的高风险地点(风险热点)。该模型还提供了与今后改进ATA风险量化和减灾措施研究有关的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semi-quantitative risk assessment of adjacent track accidents on shared-use rail corridors

There are several safety questions associated with operating passenger trains and freight trains on shared-use rail corridors (SRCs). Among them are adjacent track accidents (ATA) in which derailed railroad equipment intrudes upon (“fouls”) adjacent tracks and is struck by another train on adjacent tracks. ATAs can occur in any multiple track territory, but they become more complex and potentially more hazardous on SRCs. ATAs can be broken down into three principal events: the initial derailment, an intrusion, and a train present on an adjacent track. Previous research established a foundation for addressing intrusion risk by qualitatively identifying the risk and potential mitigation measures and conducting preliminary quantitative intrusion probability analysis; however, a gap remains between current research on intrusion risk and a comprehensive risk assessment model for ATAs. This paper presents an index-based, semi-quantitative risk analysis framework to evaluate probability and consequence of ATAs. A new risk index system was developed to evaluate ATA risk by assigning levels of probability to the three principal events and the overall ATA consequence level to different track segments, thereby enabling comparison of relative ATA risk among these track segments. The levels of ATA probability and consequence are determined by various infrastructure, rolling stock, and operational factors identified in this research where each factor contributes risk scores that can be summed and converted to levels of probability and consequence. The magnitude of risk due to each factor is determined by their effect, i.e., whether it increases or decreases the probability and/or consequence. A case study based on a 320-km, modified real-world SRC is presented to demonstrate and validate the model. Higher operating speed, lack of containment or barriers, and higher initial derailment rate all significantly affect ATA risk. The model enables comparisons of the relative ATA risks among different track segments at a resolution not previously achieved. It can also be used to locate high-risk locations (risk hotspots) on a railroad corridor where ATA risk is high. This model also provides information pertinent to future improvements in quantification of ATA risk and research on mitigation measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
8.10%
发文量
41
期刊最新文献
A MILP model to improve the robustness of a railway timetable by retiming and rerouting in a complex bottleneck area A decomposition approach to solve the individual railway crew Re-planning problem A Bi-objective model and a branch-and-price-and-cut solution method for the railroad blocking problem in hazardous material transportation Relationships between service quality and customer satisfaction in rail freight transportation: A structural equation modeling approach The evaluation of competition effect on rail fares using the difference-in-difference method through symmetric and lagged spans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1