{"title":"心肌缺血再灌注损伤中细胞死亡的调控。","authors":"Qi Xiang, Xin Yi, Xue-Hai Zhu, Xiang Wei, Ding-Sheng Jiang","doi":"10.1016/j.tem.2023.10.010","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulated cell death in myocardial ischemia-reperfusion injury.\",\"authors\":\"Qi Xiang, Xin Yi, Xue-Hai Zhu, Xiang Wei, Ding-Sheng Jiang\",\"doi\":\"10.1016/j.tem.2023.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.</p>\",\"PeriodicalId\":54415,\"journal\":{\"name\":\"Trends in Endocrinology and Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Endocrinology and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tem.2023.10.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tem.2023.10.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Regulated cell death in myocardial ischemia-reperfusion injury.
Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.
期刊介绍:
Trends in Endocrinology and Metabolism (TEM) stands as a premier Reviews journal in the realms of metabolism and endocrinology. Our commitment is reflected in the publication of refined, concise, and highly impactful articles that delve into cutting-edge topics, encompassing basic, translational, and clinical aspects. From state-of-the-art treatments for endocrine diseases to groundbreaking developments in molecular biology, TEM provides comprehensive coverage.
Explore recent advancements in diabetes, endocrine diseases, obesity, neuroendocrinology, immunometabolism, molecular and cellular biology, and a myriad of other areas through our journal.
TEM serves as an invaluable resource for researchers, clinicians, lecturers, teachers, and students. Each monthly issue is anchored by Reviews and Opinion articles, with Reviews meticulously chronicling recent and significant developments, often contributed by leading researchers in specific fields. Opinion articles foster debate and hypotheses. Our shorter pieces include Science & Society, shedding light on issues at the intersection of science, society, and policy; Spotlights, which focus on exciting recent developments in the literature, and single-point hypotheses as Forum articles. We wholeheartedly welcome and encourage responses to previously published TEM content in the form of Letters.