印度西孟加拉邦出现了多种碳青霉烯耐药阴沟肠杆菌复合体:一个危及医院感染的β-内酰胺酶的基地。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Microbiology Pub Date : 2024-08-01 Epub Date: 2023-11-21 DOI:10.1007/s10123-023-00451-0
Surojit Das, Abhi Mallick, Mili Barik, Soma Sarkar, Puranjoy Saha
{"title":"印度西孟加拉邦出现了多种碳青霉烯耐药阴沟肠杆菌复合体:一个危及医院感染的β-内酰胺酶的基地。","authors":"Surojit Das, Abhi Mallick, Mili Barik, Soma Sarkar, Puranjoy Saha","doi":"10.1007/s10123-023-00451-0","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1023-1033"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The emergence of clonally diverse carbapenem-resistant Enterobacter cloacae complex in West Bengal, India: a dockyard of β-lactamases periling nosocomial infections.\",\"authors\":\"Surojit Das, Abhi Mallick, Mili Barik, Soma Sarkar, Puranjoy Saha\",\"doi\":\"10.1007/s10123-023-00451-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"1023-1033\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00451-0\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00451-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

耐碳青霉烯阴沟肠杆菌(CRECC)构成全球公共卫生威胁,对临床治疗和感染控制构成挑战,特别是在印度等低收入和中等收入国家。我们分析了2021-2022年印度西孟加拉邦CRECC临床分离株(n = 44)的抗菌药物敏感性、主要β-内酰胺酶基因、质粒谱和遗传相关性,以了解CRECC的分子流行病学。大多数(bbb55%)菌株对氟喹诺酮类药物、氨基糖苷类药物和复方新诺明耐药,>20%对替加环素耐药,>35%对广泛耐药。Co-β-内酰胺酶的产生分为27种类型,主要是NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1(55%)和MIR(27%)。NDM-1和OXA-181是主要的变异,在印度首次观察到NDM-24和-29变异。产生β-内酰胺酶的分离株所携带的质粒范围广泛(2至bb0 212 kb):小(91%),中(27%),大(9%)和大(71%)。大约30%的分离株携带IncX3、ColE1和HI2,而IncF和R由
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The emergence of clonally diverse carbapenem-resistant Enterobacter cloacae complex in West Bengal, India: a dockyard of β-lactamases periling nosocomial infections.

Carbapenem-resistant Enterobacter cloacae complex (CRECC) constitutes a global public health threat challenging clinical treatment and infection control, especially in low- and middle-income countries such as India. We analyzed the antimicrobial susceptibility, major β-lactamase genes, plasmid profiles, and genetic relatedness to understand the molecular epidemiology of CRECC clinical isolates (n = 44) in West Bengal, India, during 2021-2022. The majority (> 55%) of the isolates were resistant to fluoroquinolones, aminoglycosides, and co-trimoxazole, even > 20% for tigecycline and > 35% were extensively drug-resistant. Co-β-lactamase production was categorized into twenty-seven types, importantly NDM (84%), OXA-48 (40%), TEM (61%), CTX-M (46%), OXA-1 (55%), and MIR (27%). The NDM-1 and OXA-181 were major variants with the first observations of NDM-24 and -29 variants in India. Wide-range of plasmids (2 to > 212 kb) were harbored by the β-lactamase-producing isolates: small (91%), medium (27%), large (9%), and mega (71%). IncX3, ColE1, and HI2 were noted in about 30% of isolates, while IncF and R were carried by < 20% of isolates. The clonally diverse CRECC isolates were noted to cause cross-infections, especially at superficial site, bloodstream, and urinary-tract. This is the first molecular surveillance on CRECC in India. The study isolates serve as the dockyard of NDM, TEM, and CTX-M harboring a wide range of plasmids. The outcomes of the study may strengthen local and national policies for infection prevention and control practices, clarifying the genetic diversity among CRECC. Extensive genomic study may further intersect the relationships between these different plasmids, especially with their sizes, types, and antibiotic resistance markers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
期刊最新文献
Diesel-degradation by indigenous bacteria of petroleum-contaminated soils. Rapid on-site detection of viable Vibrio parahaemolyticus in seafood using cis-diamminedichloroplatinum and colorimetric loop-mediated isothermal amplification (CDDP-LAMP). Scrutinizing harsh habitats endophytic fungi and their prospective effect on water-stressed maize seedlings. Effect of calf separation on gut microbiome and fecal metabolome of mother in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Unstable pathogen profile in spotted seal (Phoca largha) gut microbiota and limited turnover with habitat microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1