Joshua M Leonardis, Alyssa J Schnorenberg, Lawrence C Vogel, Gerald F Harris, Brooke A Slavens
{"title":"儿童手动轮椅推进过程中肩部复杂关节动力学变异性的性别差异。","authors":"Joshua M Leonardis, Alyssa J Schnorenberg, Lawrence C Vogel, Gerald F Harris, Brooke A Slavens","doi":"10.1123/jab.2022-0276","DOIUrl":null,"url":null,"abstract":"<p><p>More than 80% of adult manual wheelchair users with spinal cord injuries will experience shoulder pain. Females and those with decreased shoulder dynamics variability are more likely to experience pain in adulthood. Sex-related differences in shoulder dynamics variability during pediatric manual wheelchair propulsion may influence the lifetime risk of pain. We evaluated the influence of sex on 3-dimensional shoulder complex joint dynamics variability in 25 (12 females and 13 males) pediatric manual wheelchair users with spinal cord injury. Within-subject variability was quantified using the coefficient of variation. Permutation tests evaluated sex-related differences in variability using an adjusted critical alpha of P = .001. No sex-related differences in sternoclavicular or acromioclavicular joint kinematics or glenohumeral joint dynamics variability were observed (all P ≥ .042). Variability in motion, forces, and moments are considered important components of healthy joint function, as reduced variability may increase the likelihood of repetitive strain injury and pain. While further work is needed to generalize our results to other manual wheelchair user populations across the life span, our findings suggest that sex does not influence joint dynamics variability in pediatric manual wheelchair users with spinal cord injury.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"112-121"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex-Related Differences in Shoulder Complex Joint Dynamics Variability During Pediatric Manual Wheelchair Propulsion.\",\"authors\":\"Joshua M Leonardis, Alyssa J Schnorenberg, Lawrence C Vogel, Gerald F Harris, Brooke A Slavens\",\"doi\":\"10.1123/jab.2022-0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>More than 80% of adult manual wheelchair users with spinal cord injuries will experience shoulder pain. Females and those with decreased shoulder dynamics variability are more likely to experience pain in adulthood. Sex-related differences in shoulder dynamics variability during pediatric manual wheelchair propulsion may influence the lifetime risk of pain. We evaluated the influence of sex on 3-dimensional shoulder complex joint dynamics variability in 25 (12 females and 13 males) pediatric manual wheelchair users with spinal cord injury. Within-subject variability was quantified using the coefficient of variation. Permutation tests evaluated sex-related differences in variability using an adjusted critical alpha of P = .001. No sex-related differences in sternoclavicular or acromioclavicular joint kinematics or glenohumeral joint dynamics variability were observed (all P ≥ .042). Variability in motion, forces, and moments are considered important components of healthy joint function, as reduced variability may increase the likelihood of repetitive strain injury and pain. While further work is needed to generalize our results to other manual wheelchair user populations across the life span, our findings suggest that sex does not influence joint dynamics variability in pediatric manual wheelchair users with spinal cord injury.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\" \",\"pages\":\"112-121\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2022-0276\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sex-Related Differences in Shoulder Complex Joint Dynamics Variability During Pediatric Manual Wheelchair Propulsion.
More than 80% of adult manual wheelchair users with spinal cord injuries will experience shoulder pain. Females and those with decreased shoulder dynamics variability are more likely to experience pain in adulthood. Sex-related differences in shoulder dynamics variability during pediatric manual wheelchair propulsion may influence the lifetime risk of pain. We evaluated the influence of sex on 3-dimensional shoulder complex joint dynamics variability in 25 (12 females and 13 males) pediatric manual wheelchair users with spinal cord injury. Within-subject variability was quantified using the coefficient of variation. Permutation tests evaluated sex-related differences in variability using an adjusted critical alpha of P = .001. No sex-related differences in sternoclavicular or acromioclavicular joint kinematics or glenohumeral joint dynamics variability were observed (all P ≥ .042). Variability in motion, forces, and moments are considered important components of healthy joint function, as reduced variability may increase the likelihood of repetitive strain injury and pain. While further work is needed to generalize our results to other manual wheelchair user populations across the life span, our findings suggest that sex does not influence joint dynamics variability in pediatric manual wheelchair users with spinal cord injury.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.