{"title":"电子陷阱和能量储存:模拟通往未来的光明之路。","authors":"Renaldo T Moura","doi":"10.1107/S205252062301003X","DOIUrl":null,"url":null,"abstract":"<p><p>By employing time-dependent density functional theory for solid-state chemistry, the research presented by Andrii Shyichuk [Acta Cryst. (2023), B67, 437-449] significantly contributes to the understanding of electron/hole traps in doped materials.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833356/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electron traps and energy storage: modeling a bright path to the future.\",\"authors\":\"Renaldo T Moura\",\"doi\":\"10.1107/S205252062301003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By employing time-dependent density functional theory for solid-state chemistry, the research presented by Andrii Shyichuk [Acta Cryst. (2023), B67, 437-449] significantly contributes to the understanding of electron/hole traps in doped materials.</p>\",\"PeriodicalId\":7320,\"journal\":{\"name\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica Section B, Structural science, crystal engineering and materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1107/S205252062301003X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S205252062301003X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electron traps and energy storage: modeling a bright path to the future.
By employing time-dependent density functional theory for solid-state chemistry, the research presented by Andrii Shyichuk [Acta Cryst. (2023), B67, 437-449] significantly contributes to the understanding of electron/hole traps in doped materials.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.