圆红酵母交配类型和倍性的测定及其对木质纤维素生物量糖生长的影响。

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Industrial Microbiology & Biotechnology Pub Date : 2023-02-17 DOI:10.1093/jimb/kuad040
Daiane Dias Lopes, Bruce S Dien, Ronald E Hector, Vijay Singh, Stephanie R Thompson, Patricia J Slininger, Kyria Boundy-Mills, Sujit S Jagtap, Christopher V Rao
{"title":"圆红酵母交配类型和倍性的测定及其对木质纤维素生物量糖生长的影响。","authors":"Daiane Dias Lopes, Bruce S Dien, Ronald E Hector, Vijay Singh, Stephanie R Thompson, Patricia J Slininger, Kyria Boundy-Mills, Sujit S Jagtap, Christopher V Rao","doi":"10.1093/jimb/kuad040","DOIUrl":null,"url":null,"abstract":"<p><p>Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature.</p><p><strong>Summary: </strong>The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690854/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass.\",\"authors\":\"Daiane Dias Lopes, Bruce S Dien, Ronald E Hector, Vijay Singh, Stephanie R Thompson, Patricia J Slininger, Kyria Boundy-Mills, Sujit S Jagtap, Christopher V Rao\",\"doi\":\"10.1093/jimb/kuad040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature.</p><p><strong>Summary: </strong>The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.</p>\",\"PeriodicalId\":16092,\"journal\":{\"name\":\"Journal of Industrial Microbiology & Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Microbiology & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jimb/kuad040\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuad040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于其良好的生理特性,正被开发用于工业生物技术过程。这包括它以细胞内脂质体的形式产生和储存大量脂质的能力。对19株菌株进行了交配型、倍性、生长稳健性和对抑制性柳枝稷水解物(SGH)的脂质积累等方面的鉴定。交配类型是用一种新型的基于pcr的检测方法确定的,该方法是用经典的显微镜检测方法验证的。其中3株为杂合型(A1/A2)。倍性分析揭示了一个复杂的模式。2株为三倍体,8株为单倍体,8株为二倍体或非整倍体。将两个A1/A2菌株与其亲本在75%v/v浓度的SGH上的生长情况进行比较。A1/A2菌株比亲本菌株更健壮,亲本菌株要么不生长,要么延迟时间更长。在60%v/v的SGH分批培养中评估了整套细胞的生长动力学、生物量和脂质产量。脂质滴度为2.33 ~ 9.40 g/L,中位数为6.12 g/L,不包括2株未生长的菌株。脂质产率为0.032 ~ 0.131 (g/g),脂质含量为13.5 ~ 53.7% (g/g)。4个菌株的油脂产量和含量均显著提高。其中一株在本研究中脂质产量最高(0.131±0.007 g/g),此前未在文献中报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining mating type and ploidy in Rhodotorula toruloides and its effect on growth on sugars from lignocellulosic biomass.

Rhodotorula toruloides is being developed for the use in industrial biotechnology processes because of its favorable physiology. This includes its ability to produce and store large amounts of lipids in the form of intracellular lipid bodies. Nineteen strains were characterized for mating type, ploidy, robustness for growth, and accumulation of lipids on inhibitory switchgrass hydrolysate (SGH). Mating type was determined using a novel polymerase chain reaction (PCR)-based assay, which was validated using the classical microscopic test. Three of the strains were heterozygous for mating type (A1/A2). Ploidy analysis revealed a complex pattern. Two strains were triploid, eight haploid, and eight either diploid or aneuploid. Two of the A1/A2 strains were compared to their parents for growth on 75%v/v concentrated SGH. The A1/A2 strains were much more robust than the parental strains, which either did not grow or had extended lag times. The entire set was evaluated in 60%v/v SGH batch cultures for growth kinetics and biomass and lipid production. Lipid titers were 2.33-9.40 g/L with a median of 6.12 g/L, excluding the two strains that did not grow. Lipid yields were 0.032-0.131 (g/g) and lipid contents were 13.5-53.7% (g/g). Four strains had significantly higher lipid yields and contents. One of these strains, which had among the highest lipid yield in this study (0.131 ± 0.007 g/g), has not been previously described in the literature.

Summary: The yeast Rhodotorula toruloides was used to produce oil using sugars extracted from a bioenergy grass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Microbiology & Biotechnology
Journal of Industrial Microbiology & Biotechnology 工程技术-生物工程与应用微生物
CiteScore
7.70
自引率
0.00%
发文量
25
审稿时长
3 months
期刊介绍: The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology
期刊最新文献
Automated yeast cultivation control using a biosensor and flow cytometry. Evolution and Screening of Trichoderma reesei Mutants for Secreted Protein Production at Elevated Temperature. Characterization of pectinase producing Saccharomyces cerevisiae UCDFST 09-448 and its effects on cull peach fermentations. Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus. Development of Modular Expression Across Phylogenetically Distinct Diazotrophs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1