纳米流体固结液滴在自仿射可见-à-vis波纹纳米表面上的干燥行为。

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2023-11-24 DOI:10.1140/epje/s10189-023-00374-8
Deeksha Rani, Subhendu Sarkar
{"title":"纳米流体固结液滴在自仿射可见-à-vis波纹纳米表面上的干燥行为。","authors":"Deeksha Rani,&nbsp;Subhendu Sarkar","doi":"10.1140/epje/s10189-023-00374-8","DOIUrl":null,"url":null,"abstract":"<p>In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces\",\"authors\":\"Deeksha Rani,&nbsp;Subhendu Sarkar\",\"doi\":\"10.1140/epje/s10189-023-00374-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-023-00374-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00374-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,无固定液滴的蒸发自组装由于其在许多领域的广泛应用而受到了广泛的关注。虽然对光滑和各向同性粗糙(自仿射)表面的这种现象进行了很好的研究,但对自仿射与-à-vis波纹表面的结果进行比较的研究仍有待完成。在这项实验工作中,我们比较了纳米胶体微升液滴在具有相同粗糙度和界面特性的自仿射和波纹纳米表面上的润湿和蒸发动力学。研究了粒径、浓度和表面结构的耦合影响。观察到润湿性和蒸发动力学的差异,这可以通过润湿性流体和各向异性表面粗糙度之间的相互作用来解释。我们的研究结果显示了液滴蒸发过程中接触半径和角度的不同时间行为。此外,波纹表面表现出各向异性润湿性,随着蒸发的进行,液滴形状单调变化,最终产生不规则的干燥图案。研究了颗粒沉积的尺度边缘宽度和裂纹间距。我们的结果可以激发表面的制造,可以促进特定应用的方向依赖液滴运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drying behaviour of nanofluid sessile droplets on self-affine vis-à-vis corrugated nanorough surfaces

In recent years, evaporative self-assembly of sessile droplets has gained considerable attention owing to its wide applicability in many areas. While the phenomenon is well studied for smooth and isotropically rough (self-affine) surfaces, investigations comparing the outcomes on self-affine vis-à-vis corrugated surfaces remains to be done. In this experimental work, we compare the wetting and evaporation dynamics of nano-colloidal microlitre droplets on self-affine and corrugated nanorough surfaces having identical roughnesses and interface properties. The coupled influence of particle size, concentration, and surface structuring has been explored. Differences in wettability and evaporation dynamics are observed, which are explained via the interaction between wetting fluid and anisotropic surface roughness. Our findings exhibit different temporal behaviour of contact radius and angle in the evaporation process of the droplets. Further, the corrugated surface exhibits anisotropic wettability with a monotonic change in droplet shape as evaporation proceeds, finally giving rise to irregular dried patterns. The scaled rim width and crack spacing of the particulate deposits are examined. Our results can inspire fabrication of surfaces that can facilitate direction-dependent droplet motion for specific applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Modeling straight and circle swimmers: from single swimmer to collective motion Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes Research on sedimentation characteristics of squirmer in a power-law fluid Effect of repulsive interaction and initial velocity on collective motion process A structural determinant of the behavior of water at hydration and nanoconfinement conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1