鉴定与动脉粥样硬化进展相关的共表达基因和免疫浸润特征。

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Genetics Pub Date : 2024-05-01 Epub Date: 2023-11-24 DOI:10.1007/s13353-023-00801-8
Junqing Gu, Wenwei Yang, Shun Lin, Danqing Ying
{"title":"鉴定与动脉粥样硬化进展相关的共表达基因和免疫浸润特征。","authors":"Junqing Gu, Wenwei Yang, Shun Lin, Danqing Ying","doi":"10.1007/s13353-023-00801-8","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a chronic inflammatory disease that affects arterial walls and is a leading cause of cardiovascular disease. Gene co-expression modules can provide insight into the molecular mechanisms underlying atherosclerosis progression. In this study, gene co-expression network analysis (WGCNA) was done to identify gene co-expression modules associated with atherosclerosis progression. Before conducting WGCNA, preprocessing and soft power selection were performed on the GSE28829, GSE100927, GSE43292, GSE10334, and GSE16134 datasets ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi ). Co-expression modules were identified using dynamic tree cuts, and their correlations and trait associations were visualized. Enrichment analysis was performed on the blue and magenta modules to identify biological processes (BP) and pathways related to atherosclerosis. The CIBERSORT algorithm was used to predict immune cell infiltration in early and advanced atherosclerotic plaques. We identified 12 co-expression modules, in which blue and magenta were most highly correlated with atherosclerosis progression. The blue module was enriched for inflammation- and immune-related BP and pathways, including phagosome, lysosome, osteoclast differentiation, chemokine signaling pathway, platelet activation, NF-kappa B signaling pathway, Fc gamma R-mediated phagocytosis, lipid and atherosclerosis, autophagy, and apoptosis. The magenta module was significantly enriched for vascular permeability regulation, positive and negative regulation of epithelial to mesenchymal transition, and lamellipodium. Additionally, the CIBERSORT algorithm predicted less abundance of T regulatory cells and monocytes in advanced compared to early atherosclerotic plaques. The enrichment analysis of BP, cellular components, molecular functions, and atherosclerosis-related pathways in the blue and magenta modules showed that inflammation and immune response played a key role in the progression of atherosclerosis. Our study provides insights into the molecular mechanisms underlying atherosclerosis progression and identifies potential therapeutic targets for the treatment of atherosclerosis. The identification of immune cell subtypes associated with atherosclerosis could lead to the development of immunomodulatory therapies to prevent or treat atherosclerosis.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":"331-339"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of co-expressed genes and immune infiltration features related to the progression of atherosclerosis.\",\"authors\":\"Junqing Gu, Wenwei Yang, Shun Lin, Danqing Ying\",\"doi\":\"10.1007/s13353-023-00801-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atherosclerosis is a chronic inflammatory disease that affects arterial walls and is a leading cause of cardiovascular disease. Gene co-expression modules can provide insight into the molecular mechanisms underlying atherosclerosis progression. In this study, gene co-expression network analysis (WGCNA) was done to identify gene co-expression modules associated with atherosclerosis progression. Before conducting WGCNA, preprocessing and soft power selection were performed on the GSE28829, GSE100927, GSE43292, GSE10334, and GSE16134 datasets ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi ). Co-expression modules were identified using dynamic tree cuts, and their correlations and trait associations were visualized. Enrichment analysis was performed on the blue and magenta modules to identify biological processes (BP) and pathways related to atherosclerosis. The CIBERSORT algorithm was used to predict immune cell infiltration in early and advanced atherosclerotic plaques. We identified 12 co-expression modules, in which blue and magenta were most highly correlated with atherosclerosis progression. The blue module was enriched for inflammation- and immune-related BP and pathways, including phagosome, lysosome, osteoclast differentiation, chemokine signaling pathway, platelet activation, NF-kappa B signaling pathway, Fc gamma R-mediated phagocytosis, lipid and atherosclerosis, autophagy, and apoptosis. The magenta module was significantly enriched for vascular permeability regulation, positive and negative regulation of epithelial to mesenchymal transition, and lamellipodium. Additionally, the CIBERSORT algorithm predicted less abundance of T regulatory cells and monocytes in advanced compared to early atherosclerotic plaques. The enrichment analysis of BP, cellular components, molecular functions, and atherosclerosis-related pathways in the blue and magenta modules showed that inflammation and immune response played a key role in the progression of atherosclerosis. Our study provides insights into the molecular mechanisms underlying atherosclerosis progression and identifies potential therapeutic targets for the treatment of atherosclerosis. The identification of immune cell subtypes associated with atherosclerosis could lead to the development of immunomodulatory therapies to prevent or treat atherosclerosis.</p>\",\"PeriodicalId\":14891,\"journal\":{\"name\":\"Journal of Applied Genetics\",\"volume\":\" \",\"pages\":\"331-339\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13353-023-00801-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-023-00801-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动脉粥样硬化是一种影响动脉壁的慢性炎症性疾病,是心血管疾病的主要原因。基因共表达模块可以深入了解动脉粥样硬化进展的分子机制。在这项研究中,通过基因共表达网络分析(WGCNA)来鉴定与动脉粥样硬化进展相关的基因共表达模块。在进行WGCNA之前,对GSE28829、GSE100927、GSE43292、GSE10334和GSE16134数据集进行预处理和软实力选择(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi)。采用动态树切法识别共表达模块,并对其相关性和性状关联进行可视化。对蓝色和品红模块进行富集分析,以确定与动脉粥样硬化相关的生物过程(BP)和途径。CIBERSORT算法用于预测早期和晚期动脉粥样硬化斑块的免疫细胞浸润。我们确定了12个共表达模块,其中蓝色和品红与动脉粥样硬化进展高度相关。蓝色模块富含炎症和免疫相关的BP和途径,包括吞噬体、溶酶体、破骨细胞分化、趋化因子信号通路、血小板活化、nf - κ B信号通路、Fc γ r介导的吞噬、脂质和动脉粥样硬化、自噬和凋亡。品红模组对血管通透性调节、上皮向间质转化的正、负调节和板层基的调节均显著富集。此外,CIBERSORT算法预测,与早期动脉粥样硬化斑块相比,晚期的T调节细胞和单核细胞的丰度更低。蓝色和洋红色模块中BP、细胞成分、分子功能和动脉粥样硬化相关通路的富集分析表明,炎症和免疫反应在动脉粥样硬化的进展中起关键作用。我们的研究为动脉粥样硬化进展的分子机制提供了见解,并确定了动脉粥样硬化治疗的潜在治疗靶点。与动脉粥样硬化相关的免疫细胞亚型的鉴定可能导致免疫调节疗法的发展,以预防或治疗动脉粥样硬化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of co-expressed genes and immune infiltration features related to the progression of atherosclerosis.

Atherosclerosis is a chronic inflammatory disease that affects arterial walls and is a leading cause of cardiovascular disease. Gene co-expression modules can provide insight into the molecular mechanisms underlying atherosclerosis progression. In this study, gene co-expression network analysis (WGCNA) was done to identify gene co-expression modules associated with atherosclerosis progression. Before conducting WGCNA, preprocessing and soft power selection were performed on the GSE28829, GSE100927, GSE43292, GSE10334, and GSE16134 datasets ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi ). Co-expression modules were identified using dynamic tree cuts, and their correlations and trait associations were visualized. Enrichment analysis was performed on the blue and magenta modules to identify biological processes (BP) and pathways related to atherosclerosis. The CIBERSORT algorithm was used to predict immune cell infiltration in early and advanced atherosclerotic plaques. We identified 12 co-expression modules, in which blue and magenta were most highly correlated with atherosclerosis progression. The blue module was enriched for inflammation- and immune-related BP and pathways, including phagosome, lysosome, osteoclast differentiation, chemokine signaling pathway, platelet activation, NF-kappa B signaling pathway, Fc gamma R-mediated phagocytosis, lipid and atherosclerosis, autophagy, and apoptosis. The magenta module was significantly enriched for vascular permeability regulation, positive and negative regulation of epithelial to mesenchymal transition, and lamellipodium. Additionally, the CIBERSORT algorithm predicted less abundance of T regulatory cells and monocytes in advanced compared to early atherosclerotic plaques. The enrichment analysis of BP, cellular components, molecular functions, and atherosclerosis-related pathways in the blue and magenta modules showed that inflammation and immune response played a key role in the progression of atherosclerosis. Our study provides insights into the molecular mechanisms underlying atherosclerosis progression and identifies potential therapeutic targets for the treatment of atherosclerosis. The identification of immune cell subtypes associated with atherosclerosis could lead to the development of immunomodulatory therapies to prevent or treat atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
期刊最新文献
Correction to: Diallel analysis of common bean (Phaseolus vulgaris L.) genotypes for seed dietary fibre, carbohydrate, calcium and phosphorus contents. Retraction Note: A new DNA sequence entropy-based Kullback-Leibler algorithm for gene clustering. Peptidylprolyl isomerase D circular RNA sensitizes breast cancer to trastuzumab through remodeling HER2 N4-acetylcytidine modification. The role of multidisciplinary diagnostic and therapeutic model of care in Lamb-Shaffer syndrome - case report. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1