{"title":"现代放疗时代鼻咽癌放射性甲状腺功能减退的多变量正常组织并发症概率预测模型","authors":"Siriporn Wongwattananard, Anussara Prayongrat, Natchalee Srimaneekarn, Anthony Hayter, Jiratchaya Sophonphan, Seksan Kiatsupaibul, Puvarith Veerabulyarith, Yothin Rakvongthai, Napat Ritlumlert, Sarin Kitpanit, Danita Kannarunimit, Chawalit Lertbutsayanukul, Chakkapong Chakkabat","doi":"10.1093/jrr/rrad091","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation-induced hypothyroidism (RHT) is a common long-term complication for nasopharyngeal carcinoma (NPC) survivors. A model using clinical and dosimetric factors for predicting risk of RHT could suggest a proper dose-volume parameters for the treatment planning in an individual level. We aim to develop a multivariable normal tissue complication probability (NTCP) model for RHT in NPC patients after intensity-modulated radiotherapy or volumetric modulated arc therapy. The model was developed using retrospective clinical data and dose-volume data of the thyroid and pituitary gland based on a standard backward stepwise multivariable logistic regression analysis and was then internally validated using 10-fold cross-validation. The final NTCP model consisted of age, pretreatment thyroid-stimulating hormone and mean thyroid dose. The model performance was good with an area under the receiver operating characteristic curve of 0.749 on an internal (200 patients) and 0.812 on an external (25 patients) validation. The mean thyroid dose at ≤45 Gy was suggested for treatment plan, owing to an RHT incidence of 2% versus 61% in the >45 Gy group.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803165/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multivariable normal tissue complication probability model for predicting radiation-induced hypothyroidism in nasopharyngeal carcinoma patients in the modern radiotherapy era.\",\"authors\":\"Siriporn Wongwattananard, Anussara Prayongrat, Natchalee Srimaneekarn, Anthony Hayter, Jiratchaya Sophonphan, Seksan Kiatsupaibul, Puvarith Veerabulyarith, Yothin Rakvongthai, Napat Ritlumlert, Sarin Kitpanit, Danita Kannarunimit, Chawalit Lertbutsayanukul, Chakkapong Chakkabat\",\"doi\":\"10.1093/jrr/rrad091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiation-induced hypothyroidism (RHT) is a common long-term complication for nasopharyngeal carcinoma (NPC) survivors. A model using clinical and dosimetric factors for predicting risk of RHT could suggest a proper dose-volume parameters for the treatment planning in an individual level. We aim to develop a multivariable normal tissue complication probability (NTCP) model for RHT in NPC patients after intensity-modulated radiotherapy or volumetric modulated arc therapy. The model was developed using retrospective clinical data and dose-volume data of the thyroid and pituitary gland based on a standard backward stepwise multivariable logistic regression analysis and was then internally validated using 10-fold cross-validation. The final NTCP model consisted of age, pretreatment thyroid-stimulating hormone and mean thyroid dose. The model performance was good with an area under the receiver operating characteristic curve of 0.749 on an internal (200 patients) and 0.812 on an external (25 patients) validation. The mean thyroid dose at ≤45 Gy was suggested for treatment plan, owing to an RHT incidence of 2% versus 61% in the >45 Gy group.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrad091\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrad091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A multivariable normal tissue complication probability model for predicting radiation-induced hypothyroidism in nasopharyngeal carcinoma patients in the modern radiotherapy era.
Radiation-induced hypothyroidism (RHT) is a common long-term complication for nasopharyngeal carcinoma (NPC) survivors. A model using clinical and dosimetric factors for predicting risk of RHT could suggest a proper dose-volume parameters for the treatment planning in an individual level. We aim to develop a multivariable normal tissue complication probability (NTCP) model for RHT in NPC patients after intensity-modulated radiotherapy or volumetric modulated arc therapy. The model was developed using retrospective clinical data and dose-volume data of the thyroid and pituitary gland based on a standard backward stepwise multivariable logistic regression analysis and was then internally validated using 10-fold cross-validation. The final NTCP model consisted of age, pretreatment thyroid-stimulating hormone and mean thyroid dose. The model performance was good with an area under the receiver operating characteristic curve of 0.749 on an internal (200 patients) and 0.812 on an external (25 patients) validation. The mean thyroid dose at ≤45 Gy was suggested for treatment plan, owing to an RHT incidence of 2% versus 61% in the >45 Gy group.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.