脊柱立体定向放射治疗四种剂量计算算法的剂量学验证。

IF 1.9 4区 医学 Q2 BIOLOGY Journal of Radiation Research Pub Date : 2024-01-19 DOI:10.1093/jrr/rrad086
Hideaki Hirashima, Mitsuhiro Nakamura, Kiyonao Nakamura, Yukinori Matsuo, Takashi Mizowaki
{"title":"脊柱立体定向放射治疗四种剂量计算算法的剂量学验证。","authors":"Hideaki Hirashima, Mitsuhiro Nakamura, Kiyonao Nakamura, Yukinori Matsuo, Takashi Mizowaki","doi":"10.1093/jrr/rrad086","DOIUrl":null,"url":null,"abstract":"<p><p>The applications of Type B [anisotropic analytical algorithm (AAA) and collapsed cone (CC)] and Type C [Acuros XB (AXB) and photon Monte Carlo (PMC)] dose calculation algorithms in spine stereotactic body radiotherapy (SBRT) were evaluated. Water- and bone-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. Subsequently, 48 consecutive patients with clinical spine SBRT plans were evaluated. All treatment plans were created using AXB in Eclipse. The prescription dose was 24 Gy in two fractions at a 10 MV FFF on TrueBeam. The doses were then recalculated with AAA, CC and PMC while maintaining the AXB-calculated monitor units and beam arrangement. The dose index values obtained using the four dose calculation algorithms were then compared. The AXB and PMC dose distributions agreed with the bone-equivalent phantom measurements (within ±2.0%); the AAA and CC values were higher than those in the bone-equivalent phantom region. For the spine SBRT plans, PMC, AAA and CC were overestimated compared with AXB in terms of the near minimum and maximum doses of the target and organ at risk, respectively; the mean dose difference was within 4.2%, which is equivalent with within 1 Gy. The phantom study showed that the results from AXB and PMC agreed with the measurements within ±2.0%. However, the mean dose difference ranged from 0.5 to 1 Gy in the spine SBRT planning study when the dose calculation algorithms changed. Users should incorporate a clinical introduction that includes an awareness of these differences.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"109-118"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803157/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dosimetric verification of four dose calculation algorithms for spine stereotactic body radiotherapy.\",\"authors\":\"Hideaki Hirashima, Mitsuhiro Nakamura, Kiyonao Nakamura, Yukinori Matsuo, Takashi Mizowaki\",\"doi\":\"10.1093/jrr/rrad086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The applications of Type B [anisotropic analytical algorithm (AAA) and collapsed cone (CC)] and Type C [Acuros XB (AXB) and photon Monte Carlo (PMC)] dose calculation algorithms in spine stereotactic body radiotherapy (SBRT) were evaluated. Water- and bone-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. Subsequently, 48 consecutive patients with clinical spine SBRT plans were evaluated. All treatment plans were created using AXB in Eclipse. The prescription dose was 24 Gy in two fractions at a 10 MV FFF on TrueBeam. The doses were then recalculated with AAA, CC and PMC while maintaining the AXB-calculated monitor units and beam arrangement. The dose index values obtained using the four dose calculation algorithms were then compared. The AXB and PMC dose distributions agreed with the bone-equivalent phantom measurements (within ±2.0%); the AAA and CC values were higher than those in the bone-equivalent phantom region. For the spine SBRT plans, PMC, AAA and CC were overestimated compared with AXB in terms of the near minimum and maximum doses of the target and organ at risk, respectively; the mean dose difference was within 4.2%, which is equivalent with within 1 Gy. The phantom study showed that the results from AXB and PMC agreed with the measurements within ±2.0%. However, the mean dose difference ranged from 0.5 to 1 Gy in the spine SBRT planning study when the dose calculation algorithms changed. Users should incorporate a clinical introduction that includes an awareness of these differences.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":\" \",\"pages\":\"109-118\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803157/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrad086\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrad086","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

评价B型[各向异性分析算法(AAA)和塌陷锥(CC)]和C型[Acuros XB (AXB)和光子蒙特卡罗(PMC)]剂量计算算法在脊柱立体定向放射治疗(SBRT)中的应用。水当量和骨当量幻影相结合来评估百分比深度剂量和剂量谱。随后,对48例连续实施临床脊柱SBRT计划的患者进行了评估。所有的治疗计划都是在Eclipse中使用AXB创建的。处方剂量为24gy,分两部分,在TrueBeam上以10 MV FFF照射。然后用AAA、CC和PMC重新计算剂量,同时保持axb计算的监测单元和光束排列。然后比较四种剂量计算算法得到的剂量指标值。AXB和PMC剂量分布与骨等效幻象测量值一致(在±2.0%范围内);AAA和CC值高于骨等效幻区。对于脊柱SBRT计划,PMC、AAA和CC分别在靶器官和危险器官的近最小和最大剂量方面与AXB相比被高估;平均剂量差在4.2%以内,相当于1 Gy以内。虚影研究表明,AXB和PMC的测量结果与测量值在±2.0%的范围内一致。然而,当剂量计算算法改变时,脊柱SBRT计划研究中的平均剂量差异范围为0.5至1 Gy。用户应纳入临床介绍,包括对这些差异的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dosimetric verification of four dose calculation algorithms for spine stereotactic body radiotherapy.

The applications of Type B [anisotropic analytical algorithm (AAA) and collapsed cone (CC)] and Type C [Acuros XB (AXB) and photon Monte Carlo (PMC)] dose calculation algorithms in spine stereotactic body radiotherapy (SBRT) were evaluated. Water- and bone-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. Subsequently, 48 consecutive patients with clinical spine SBRT plans were evaluated. All treatment plans were created using AXB in Eclipse. The prescription dose was 24 Gy in two fractions at a 10 MV FFF on TrueBeam. The doses were then recalculated with AAA, CC and PMC while maintaining the AXB-calculated monitor units and beam arrangement. The dose index values obtained using the four dose calculation algorithms were then compared. The AXB and PMC dose distributions agreed with the bone-equivalent phantom measurements (within ±2.0%); the AAA and CC values were higher than those in the bone-equivalent phantom region. For the spine SBRT plans, PMC, AAA and CC were overestimated compared with AXB in terms of the near minimum and maximum doses of the target and organ at risk, respectively; the mean dose difference was within 4.2%, which is equivalent with within 1 Gy. The phantom study showed that the results from AXB and PMC agreed with the measurements within ±2.0%. However, the mean dose difference ranged from 0.5 to 1 Gy in the spine SBRT planning study when the dose calculation algorithms changed. Users should incorporate a clinical introduction that includes an awareness of these differences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
86
审稿时长
4-8 weeks
期刊介绍: The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO). Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal. Articles considered fall into two broad categories: Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable. Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences. Please be advised that JRR does not accept any papers of pure physics or chemistry. The journal is bimonthly, and is edited and published by the JRR Editorial Committee.
期刊最新文献
Characterization of acrylic phantom for use in quality assurance of BNCT beam output procedure. Cost-effectiveness analysis for multi adverse events of proton beam therapy for pediatric medulloblastoma in Japan. Feasibility of creating a daily adaptive plan using automatic DIR-created target and OARs contours in patients with prostate cancer magnetic-resonance-guided adaptive radiotherapy. Prophylactic cranial irradiation for limited-stage small-cell lung cancer in the modern magnetic resonance imaging era may be omitted: a propensity score-matched analysis. Elevated α/β ratio after hypofractionated radiotherapy correlated with DNA damage repairment in an experimental model of prostate cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1