Theophile Niyitanga, Mohd Quasim Khan, Khursheed Ahmad, Rais Ahmad Khan
{"title":"一种阿奇霉素传感器的制备。","authors":"Theophile Niyitanga, Mohd Quasim Khan, Khursheed Ahmad, Rais Ahmad Khan","doi":"10.3390/bios13110986","DOIUrl":null,"url":null,"abstract":"<p><p>Azithromycin (AZY) is a well-known top-prioritized antibiotic and is used by humans in strong concentrations. However, the side effects of the AZY antibiotic may cause some serious and significant damage to humans and the environment. Thus, there is a need to develop effective and sensitive sensors to monitor accurate concentrations of AZY. In the last decade, electrochemistry-based sensors have received enormous attention from the scientific community because of their high sensitivity, selectivity, cost-effectiveness, fast response, rapid detection response, simple fabrication, and working principle. It is important to mention that electrochemical sensors rely on the properties of electrode modifiers. Hence, the selection of electrode materials is of great significance when designing and developing efficient and robust electrochemical sensors. In this study, we fabricated an AZY sensor by utilizing a molybdenum disulfide/titanium aluminum carbide (MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub>) composite as the electrode material. The MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite was synthesized via a simple sonication process. The synthesized MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite was characterized using a powder X-ray diffraction (XRD) method to examine the phase purity and formation of the MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite. Scanning electron microscopy (SEM) was used to study the surface morphological features of the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite, whereas energy dispersive X-ray spectroscopy (EDAX) was adopted to determine the elemental composition of the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite. The glassy carbon (GC) electrode was modified with the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite and applied as the AZY sensor. The sensing performance of the MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite-modified GC electrode was studied using linear sweep voltammetry. The sensor demonstrated excellent performance when determining AZY and showed a good detection limit of 0.009 µM with a sensitivity of 6.77 µA/µM.cm<sup>2</sup>.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669414/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of an Azithromycin Sensor.\",\"authors\":\"Theophile Niyitanga, Mohd Quasim Khan, Khursheed Ahmad, Rais Ahmad Khan\",\"doi\":\"10.3390/bios13110986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Azithromycin (AZY) is a well-known top-prioritized antibiotic and is used by humans in strong concentrations. However, the side effects of the AZY antibiotic may cause some serious and significant damage to humans and the environment. Thus, there is a need to develop effective and sensitive sensors to monitor accurate concentrations of AZY. In the last decade, electrochemistry-based sensors have received enormous attention from the scientific community because of their high sensitivity, selectivity, cost-effectiveness, fast response, rapid detection response, simple fabrication, and working principle. It is important to mention that electrochemical sensors rely on the properties of electrode modifiers. Hence, the selection of electrode materials is of great significance when designing and developing efficient and robust electrochemical sensors. In this study, we fabricated an AZY sensor by utilizing a molybdenum disulfide/titanium aluminum carbide (MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub>) composite as the electrode material. The MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite was synthesized via a simple sonication process. The synthesized MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite was characterized using a powder X-ray diffraction (XRD) method to examine the phase purity and formation of the MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite. Scanning electron microscopy (SEM) was used to study the surface morphological features of the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite, whereas energy dispersive X-ray spectroscopy (EDAX) was adopted to determine the elemental composition of the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite. The glassy carbon (GC) electrode was modified with the prepared MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite and applied as the AZY sensor. The sensing performance of the MoS<sub>2</sub>@Ti<sub>3</sub>AlC<sub>2</sub> composite-modified GC electrode was studied using linear sweep voltammetry. The sensor demonstrated excellent performance when determining AZY and showed a good detection limit of 0.009 µM with a sensitivity of 6.77 µA/µM.cm<sup>2</sup>.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios13110986\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios13110986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Azithromycin (AZY) is a well-known top-prioritized antibiotic and is used by humans in strong concentrations. However, the side effects of the AZY antibiotic may cause some serious and significant damage to humans and the environment. Thus, there is a need to develop effective and sensitive sensors to monitor accurate concentrations of AZY. In the last decade, electrochemistry-based sensors have received enormous attention from the scientific community because of their high sensitivity, selectivity, cost-effectiveness, fast response, rapid detection response, simple fabrication, and working principle. It is important to mention that electrochemical sensors rely on the properties of electrode modifiers. Hence, the selection of electrode materials is of great significance when designing and developing efficient and robust electrochemical sensors. In this study, we fabricated an AZY sensor by utilizing a molybdenum disulfide/titanium aluminum carbide (MoS2@Ti3AlC2) composite as the electrode material. The MoS2@Ti3AlC2 composite was synthesized via a simple sonication process. The synthesized MoS2@Ti3AlC2 composite was characterized using a powder X-ray diffraction (XRD) method to examine the phase purity and formation of the MoS2@Ti3AlC2 composite. Scanning electron microscopy (SEM) was used to study the surface morphological features of the prepared MoS2@Ti3AlC2 composite, whereas energy dispersive X-ray spectroscopy (EDAX) was adopted to determine the elemental composition of the prepared MoS2@Ti3AlC2 composite. The glassy carbon (GC) electrode was modified with the prepared MoS2@Ti3AlC2 composite and applied as the AZY sensor. The sensing performance of the MoS2@Ti3AlC2 composite-modified GC electrode was studied using linear sweep voltammetry. The sensor demonstrated excellent performance when determining AZY and showed a good detection limit of 0.009 µM with a sensitivity of 6.77 µA/µM.cm2.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.