基于模糊逻辑的便携式红外血糖仪。

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2023-11-20 DOI:10.3390/bios13110991
Hasan Mhd Nazha, Mhd Ayham Darwich, Ebrahim Ismaiel, Anas Shahen, Tamim Nasser, Maher Assaad, Daniel Juhre
{"title":"基于模糊逻辑的便携式红外血糖仪。","authors":"Hasan Mhd Nazha, Mhd Ayham Darwich, Ebrahim Ismaiel, Anas Shahen, Tamim Nasser, Maher Assaad, Daniel Juhre","doi":"10.3390/bios13110991","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose monitoring systems are restricted in their measurement frequency and need finger pricks for blood samples. This research study focuses on the development of a non-invasive, real-time glucose monitoring method based on the detection of glucose in human tears and finger blood using mid-infrared (IR) spectroscopy. The proposed solution combines a fuzzy logic-based calibration mechanism with an IR sensor and Arduino controller. This calibration technique increases the accuracy of non-invasive glucose testing based on MID absorbance in fingertips and human tears. The data demonstrate that our device has high accuracy and reliability, with an error rate of less than 3%, according to the EGA. Out of 360 measurements, 97.5% fell into zone A, 2.2% into zone B, and 0.3% into zone C of the Clarke Error Grid. This suggests that our device can give clinically precise and acceptable estimates of blood glucose levels without inflicting any harm or discomfort on the user.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"13 11","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669386/pdf/","citationCount":"0","resultStr":"{\"title\":\"Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic.\",\"authors\":\"Hasan Mhd Nazha, Mhd Ayham Darwich, Ebrahim Ismaiel, Anas Shahen, Tamim Nasser, Maher Assaad, Daniel Juhre\",\"doi\":\"10.3390/bios13110991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose monitoring systems are restricted in their measurement frequency and need finger pricks for blood samples. This research study focuses on the development of a non-invasive, real-time glucose monitoring method based on the detection of glucose in human tears and finger blood using mid-infrared (IR) spectroscopy. The proposed solution combines a fuzzy logic-based calibration mechanism with an IR sensor and Arduino controller. This calibration technique increases the accuracy of non-invasive glucose testing based on MID absorbance in fingertips and human tears. The data demonstrate that our device has high accuracy and reliability, with an error rate of less than 3%, according to the EGA. Out of 360 measurements, 97.5% fell into zone A, 2.2% into zone B, and 0.3% into zone C of the Clarke Error Grid. This suggests that our device can give clinically precise and acceptable estimates of blood glucose levels without inflicting any harm or discomfort on the user.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"13 11\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10669386/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios13110991\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios13110991","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)是一种慢性代谢疾病,其特征是由于胰岛素产生或敏感性降低而导致血糖水平升高。目前对妊娠期糖尿病的诊断方法需要进行侵入性血液检查,这种检查既痛苦又不现实,无法进行常规监测。此外,典型的血糖监测系统在测量频率上受到限制,并且需要手指穿刺采集血液样本。本研究的重点是开发一种基于中红外(IR)光谱检测人体眼泪和手指血液中葡萄糖的无创、实时血糖监测方法。提出的解决方案将基于模糊逻辑的校准机制与红外传感器和Arduino控制器相结合。该校准技术提高了基于指尖和人眼泪MID吸光度的无创血糖检测的准确性。根据EGA的数据,我们的设备具有很高的准确性和可靠性,错误率低于3%。在360次测量中,97.5%落入克拉克误差网格的A区,2.2%落入B区,0.3%落入C区。这表明,我们的设备可以提供临床精确和可接受的血糖水平估计,而不会对用户造成任何伤害或不适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Portable Infrared-Based Glucometer Reinforced with Fuzzy Logic.

Diabetes mellitus (DM) is a chronic metabolic condition characterized by high blood glucose levels owing to decreased insulin production or sensitivity. Current diagnostic approaches for gestational diabetes entail intrusive blood tests, which are painful and impractical for regular monitoring. Additionally, typical blood glucose monitoring systems are restricted in their measurement frequency and need finger pricks for blood samples. This research study focuses on the development of a non-invasive, real-time glucose monitoring method based on the detection of glucose in human tears and finger blood using mid-infrared (IR) spectroscopy. The proposed solution combines a fuzzy logic-based calibration mechanism with an IR sensor and Arduino controller. This calibration technique increases the accuracy of non-invasive glucose testing based on MID absorbance in fingertips and human tears. The data demonstrate that our device has high accuracy and reliability, with an error rate of less than 3%, according to the EGA. Out of 360 measurements, 97.5% fell into zone A, 2.2% into zone B, and 0.3% into zone C of the Clarke Error Grid. This suggests that our device can give clinically precise and acceptable estimates of blood glucose levels without inflicting any harm or discomfort on the user.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1