D. Cathie , R. Jardine , R. Silvano , S. Kontoe , F. Schroeder
{"title":"砂土中大直径管状桩轴向承载力老化趋势","authors":"D. Cathie , R. Jardine , R. Silvano , S. Kontoe , F. Schroeder","doi":"10.1016/j.sandf.2023.101401","DOIUrl":null,"url":null,"abstract":"<div><p>The paper examines dynamic pile test data from 25 high-quality offshore cases, where end-of-initial driving (EoID) and beginning-of-restrike (BoR) instrumented dynamic monitoring was undertaken on tubular piles driven in sands at well-characterised sites after known setup periods. The static resistances derived from signal matching by two independent specialist teams using different software are compared with CPT-based pile capacity calculations, providing the first axial capacity and setup dataset for large offshore piles driven in sand. Complementary re-analyses are made from three onshore/nearshore sites where dynamic and static testing was conducted on comparable piles. Open-ended tubular steel piles with 0.3–3.5 m diameters driven in (mainly dense) sands are all shown to develop marked setup, which is most active over the first 2–10 days. All piles show similar outcomes 20–30 days after installation. However, the larger diameter offshore piles’ dynamic tests indicate no further setup after 30 days, while smaller diameter piles at onshore/nearshore sites continue to display further marked capacity growth. Comparisons of the axial shaft capacities inferred from signal matching with CPT-based design methods provides insights into the performance of the design methods. A trend for long-term pile shaft set-up to decrease with increasing diameter is identified and ascribed principally to the diameter-dependent constrained dilatancy that develops under axial loading at the pile-sand interface.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"63 6","pages":"Article 101401"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080623001300/pdfft?md5=b39e5dc6a23e51caa9ba4838e6cc11c0&pid=1-s2.0-S0038080623001300-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Axial capacity ageing trends of large diameter tubular piles driven in sand\",\"authors\":\"D. Cathie , R. Jardine , R. Silvano , S. Kontoe , F. Schroeder\",\"doi\":\"10.1016/j.sandf.2023.101401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper examines dynamic pile test data from 25 high-quality offshore cases, where end-of-initial driving (EoID) and beginning-of-restrike (BoR) instrumented dynamic monitoring was undertaken on tubular piles driven in sands at well-characterised sites after known setup periods. The static resistances derived from signal matching by two independent specialist teams using different software are compared with CPT-based pile capacity calculations, providing the first axial capacity and setup dataset for large offshore piles driven in sand. Complementary re-analyses are made from three onshore/nearshore sites where dynamic and static testing was conducted on comparable piles. Open-ended tubular steel piles with 0.3–3.5 m diameters driven in (mainly dense) sands are all shown to develop marked setup, which is most active over the first 2–10 days. All piles show similar outcomes 20–30 days after installation. However, the larger diameter offshore piles’ dynamic tests indicate no further setup after 30 days, while smaller diameter piles at onshore/nearshore sites continue to display further marked capacity growth. Comparisons of the axial shaft capacities inferred from signal matching with CPT-based design methods provides insights into the performance of the design methods. A trend for long-term pile shaft set-up to decrease with increasing diameter is identified and ascribed principally to the diameter-dependent constrained dilatancy that develops under axial loading at the pile-sand interface.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"63 6\",\"pages\":\"Article 101401\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001300/pdfft?md5=b39e5dc6a23e51caa9ba4838e6cc11c0&pid=1-s2.0-S0038080623001300-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080623001300\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080623001300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Axial capacity ageing trends of large diameter tubular piles driven in sand
The paper examines dynamic pile test data from 25 high-quality offshore cases, where end-of-initial driving (EoID) and beginning-of-restrike (BoR) instrumented dynamic monitoring was undertaken on tubular piles driven in sands at well-characterised sites after known setup periods. The static resistances derived from signal matching by two independent specialist teams using different software are compared with CPT-based pile capacity calculations, providing the first axial capacity and setup dataset for large offshore piles driven in sand. Complementary re-analyses are made from three onshore/nearshore sites where dynamic and static testing was conducted on comparable piles. Open-ended tubular steel piles with 0.3–3.5 m diameters driven in (mainly dense) sands are all shown to develop marked setup, which is most active over the first 2–10 days. All piles show similar outcomes 20–30 days after installation. However, the larger diameter offshore piles’ dynamic tests indicate no further setup after 30 days, while smaller diameter piles at onshore/nearshore sites continue to display further marked capacity growth. Comparisons of the axial shaft capacities inferred from signal matching with CPT-based design methods provides insights into the performance of the design methods. A trend for long-term pile shaft set-up to decrease with increasing diameter is identified and ascribed principally to the diameter-dependent constrained dilatancy that develops under axial loading at the pile-sand interface.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.