{"title":"组织公共部门采用人工智能:在分离与整合之间导航","authors":"Friso Selten, Bram Klievink","doi":"10.1016/j.giq.2023.101885","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Intelligence (AI) has the potential to improve public governance, but the use of AI in public organizations remains limited. In this qualitative study, we explore how public organizations strategically manage the adoption of AI. Managing AI adoption in the public sector is complex because of the inherent tension between public organizations' identity, characterized by formal and rigid structures, and the demands of AI innovation that require experimentation and flexibility. Our findings show that public organizations navigate this tension either by creating separate departments for data science teams, or by integrating data science teams into already existing operational departments. The case studies reveal that separation improves the technical expertise and capabilities of the organization, whereas integration improves the alignment between AI and primary processes. The findings also show that both approaches are characterized by different AI adoption barriers. We empirically identify the processes and routines public organizations develop to overcome these barriers.</p></div>","PeriodicalId":48258,"journal":{"name":"Government Information Quarterly","volume":"41 1","pages":"Article 101885"},"PeriodicalIF":7.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0740624X23000850/pdfft?md5=fba165ee174e35581178f95a18c67edb&pid=1-s2.0-S0740624X23000850-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Organizing public sector AI adoption: Navigating between separation and integration\",\"authors\":\"Friso Selten, Bram Klievink\",\"doi\":\"10.1016/j.giq.2023.101885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial Intelligence (AI) has the potential to improve public governance, but the use of AI in public organizations remains limited. In this qualitative study, we explore how public organizations strategically manage the adoption of AI. Managing AI adoption in the public sector is complex because of the inherent tension between public organizations' identity, characterized by formal and rigid structures, and the demands of AI innovation that require experimentation and flexibility. Our findings show that public organizations navigate this tension either by creating separate departments for data science teams, or by integrating data science teams into already existing operational departments. The case studies reveal that separation improves the technical expertise and capabilities of the organization, whereas integration improves the alignment between AI and primary processes. The findings also show that both approaches are characterized by different AI adoption barriers. We empirically identify the processes and routines public organizations develop to overcome these barriers.</p></div>\",\"PeriodicalId\":48258,\"journal\":{\"name\":\"Government Information Quarterly\",\"volume\":\"41 1\",\"pages\":\"Article 101885\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0740624X23000850/pdfft?md5=fba165ee174e35581178f95a18c67edb&pid=1-s2.0-S0740624X23000850-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Government Information Quarterly\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740624X23000850\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Government Information Quarterly","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740624X23000850","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Organizing public sector AI adoption: Navigating between separation and integration
Artificial Intelligence (AI) has the potential to improve public governance, but the use of AI in public organizations remains limited. In this qualitative study, we explore how public organizations strategically manage the adoption of AI. Managing AI adoption in the public sector is complex because of the inherent tension between public organizations' identity, characterized by formal and rigid structures, and the demands of AI innovation that require experimentation and flexibility. Our findings show that public organizations navigate this tension either by creating separate departments for data science teams, or by integrating data science teams into already existing operational departments. The case studies reveal that separation improves the technical expertise and capabilities of the organization, whereas integration improves the alignment between AI and primary processes. The findings also show that both approaches are characterized by different AI adoption barriers. We empirically identify the processes and routines public organizations develop to overcome these barriers.
期刊介绍:
Government Information Quarterly (GIQ) delves into the convergence of policy, information technology, government, and the public. It explores the impact of policies on government information flows, the role of technology in innovative government services, and the dynamic between citizens and governing bodies in the digital age. GIQ serves as a premier journal, disseminating high-quality research and insights that bridge the realms of policy, information technology, government, and public engagement.