开发农业灌溉替代水源的经济可行性

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Opinion in Chemical Engineering Pub Date : 2023-11-17 DOI:10.1016/j.coche.2023.100987
Edirisooriya Mudiyanselage Nimanthi Thiloka Edirisooriya , Huiyao Wang , Sankha Banerjee , Karl Longley , William Wright , Walter Mizuno , Pei Xu
{"title":"开发农业灌溉替代水源的经济可行性","authors":"Edirisooriya Mudiyanselage Nimanthi Thiloka Edirisooriya ,&nbsp;Huiyao Wang ,&nbsp;Sankha Banerjee ,&nbsp;Karl Longley ,&nbsp;William Wright ,&nbsp;Walter Mizuno ,&nbsp;Pei Xu","doi":"10.1016/j.coche.2023.100987","DOIUrl":null,"url":null,"abstract":"<div><p>Alternative water sources can be applied to water-stressed agricultural sites to satisfy the increasing water demand. The increased costs associated with the treatment of impaired water, distribution/conveyance/storage, and waste management to meet water quality requirements and regulations are the challenges in developing an alternative water-based irrigation system. This study evaluates the economic feasibility of developing nontraditional water for agriculture and identifies strategies to address the challenges by increasing affordability. In the Southwest United States, reuse of filtered disinfected municipal wastewater offers the most cost-effective option followed by desalinated brackish water, treated produced water, and seawater. High costs, energy demand, concentrate disposal, and soil salinity management are the primary challenges in using alternative water for irrigation. Economic feasibility can be enhanced by implementing autonomous, easy-to-operate, renewable energy-powered, decentralized desalination systems. The affordability of developing alternative water for irrigation will increase with reduced treatment and waste disposal costs, depletion of conventional irrigation water supplies, and droughts.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100987"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic feasibility of developing alternative water supplies for agricultural irrigation\",\"authors\":\"Edirisooriya Mudiyanselage Nimanthi Thiloka Edirisooriya ,&nbsp;Huiyao Wang ,&nbsp;Sankha Banerjee ,&nbsp;Karl Longley ,&nbsp;William Wright ,&nbsp;Walter Mizuno ,&nbsp;Pei Xu\",\"doi\":\"10.1016/j.coche.2023.100987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alternative water sources can be applied to water-stressed agricultural sites to satisfy the increasing water demand. The increased costs associated with the treatment of impaired water, distribution/conveyance/storage, and waste management to meet water quality requirements and regulations are the challenges in developing an alternative water-based irrigation system. This study evaluates the economic feasibility of developing nontraditional water for agriculture and identifies strategies to address the challenges by increasing affordability. In the Southwest United States, reuse of filtered disinfected municipal wastewater offers the most cost-effective option followed by desalinated brackish water, treated produced water, and seawater. High costs, energy demand, concentrate disposal, and soil salinity management are the primary challenges in using alternative water for irrigation. Economic feasibility can be enhanced by implementing autonomous, easy-to-operate, renewable energy-powered, decentralized desalination systems. The affordability of developing alternative water for irrigation will increase with reduced treatment and waste disposal costs, depletion of conventional irrigation water supplies, and droughts.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"43 \",\"pages\":\"Article 100987\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000916\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

替代水源可以应用于缺水的农业场地,以满足日益增长的用水需求。与处理受损水、分配/运输/储存以及为满足水质要求和规章而进行的废物管理有关的费用增加,是发展替代性水基灌溉系统所面临的挑战。本研究评估了发展非传统农业用水的经济可行性,并确定了通过提高可负担性来应对挑战的策略。在美国西南部,过滤消毒的城市污水的再利用是最具成本效益的选择,其次是淡化水、处理过的采出水和海水。高成本、能源需求、浓缩物处理和土壤盐分管理是使用替代水进行灌溉的主要挑战。经济可行性可以通过实施自主的、易于操作的、可再生能源驱动的、分散的海水淡化系统来提高。开发替代灌溉用水的负担能力将随着处理和废物处理费用的减少、传统灌溉用水供应的枯竭和干旱而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Economic feasibility of developing alternative water supplies for agricultural irrigation

Alternative water sources can be applied to water-stressed agricultural sites to satisfy the increasing water demand. The increased costs associated with the treatment of impaired water, distribution/conveyance/storage, and waste management to meet water quality requirements and regulations are the challenges in developing an alternative water-based irrigation system. This study evaluates the economic feasibility of developing nontraditional water for agriculture and identifies strategies to address the challenges by increasing affordability. In the Southwest United States, reuse of filtered disinfected municipal wastewater offers the most cost-effective option followed by desalinated brackish water, treated produced water, and seawater. High costs, energy demand, concentrate disposal, and soil salinity management are the primary challenges in using alternative water for irrigation. Economic feasibility can be enhanced by implementing autonomous, easy-to-operate, renewable energy-powered, decentralized desalination systems. The affordability of developing alternative water for irrigation will increase with reduced treatment and waste disposal costs, depletion of conventional irrigation water supplies, and droughts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
期刊最新文献
New advance in application research of high-gravity process intensification technology Editorial Board Distillation in high gravity chemical engineering Gas–liquid and liquid–liquid vortex technology for process intensification Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1