{"title":"抗癌药物的发现、合成、活性、构效关系及临床发展。全面审查。","authors":"Sheo B. Singh","doi":"10.1039/d3np00053b","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 1982 to up to the end of 2022</p></div><div><p>Bioassay guided purification of the extracts of <em>Combretum caffrum</em> led to the discovery of six series of combretastatins A–D with cytotoxic activities ranging from sub nM to >50 μM ED<sub>50</sub>'s against a wide variety of cancer cell lines. Of these, <em>cis</em>-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting <em>in vivo</em> efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved <em>in vitro</em> and <em>in vivo</em> potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A–D, including bioassay guided discovery, total syntheses, and structure–activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 2","pages":"Pages 298-322"},"PeriodicalIF":10.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery, synthesis, activities, structure–activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review†‡\",\"authors\":\"Sheo B. Singh\",\"doi\":\"10.1039/d3np00053b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: 1982 to up to the end of 2022</p></div><div><p>Bioassay guided purification of the extracts of <em>Combretum caffrum</em> led to the discovery of six series of combretastatins A–D with cytotoxic activities ranging from sub nM to >50 μM ED<sub>50</sub>'s against a wide variety of cancer cell lines. Of these, <em>cis</em>-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting <em>in vivo</em> efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved <em>in vitro</em> and <em>in vivo</em> potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A–D, including bioassay guided discovery, total syntheses, and structure–activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.</p></div>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\"41 2\",\"pages\":\"Pages 298-322\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056824000096\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery, synthesis, activities, structure–activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review†‡
Covering: 1982 to up to the end of 2022
Bioassay guided purification of the extracts of Combretum caffrum led to the discovery of six series of combretastatins A–D with cytotoxic activities ranging from sub nM to >50 μM ED50's against a wide variety of cancer cell lines. Of these, cis-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting in vivo efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved in vitro and in vivo potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A–D, including bioassay guided discovery, total syntheses, and structure–activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.