具有多尺度自适应动态的自然场景视网膜神经编码的机械可解释模型。

Xuehao Ding, Dongsoo Lee, Satchel Grant, Heike Stein, Lane McIntosh, Niru Maheswaranathan, Stephen Baccus
{"title":"具有多尺度自适应动态的自然场景视网膜神经编码的机械可解释模型。","authors":"Xuehao Ding, Dongsoo Lee, Satchel Grant, Heike Stein, Lane McIntosh, Niru Maheswaranathan, Stephen Baccus","doi":"10.1109/ieeeconf53345.2021.9723187","DOIUrl":null,"url":null,"abstract":"<p><p>The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model [1]. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":"2021 ","pages":"287-291"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680971/pdf/","citationCount":"0","resultStr":"{\"title\":\"A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.\",\"authors\":\"Xuehao Ding, Dongsoo Lee, Satchel Grant, Heike Stein, Lane McIntosh, Niru Maheswaranathan, Stephen Baccus\",\"doi\":\"10.1109/ieeeconf53345.2021.9723187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model [1]. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\"2021 \",\"pages\":\"287-291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ieeeconf53345.2021.9723187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeeconf53345.2021.9723187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉系统在大范围的时空尺度上处理刺激,单个神经元接收来自数万个神经元的输入,这些神经元的动态范围从几毫秒到几十秒不等。这对创建既能准确捕获视觉计算又能在机械上可解释的模型提出了挑战。在这里,我们提出了一个蝾螈视网膜神经节细胞尖峰反应的模型,用多电极阵列记录了自然场景反应和缓慢的自适应动态。该模型由一个三层卷积神经网络(CNN)组成,该网络经过修改,包含了来自线性-非线性-动力学(LNK)模型的局部循环突触动力学[1]。我们提出了交替的自然场景和均匀场白噪声刺激,旨在参与慢对比度适应。为了克服慢速和快速动态拟合的困难,我们首先优化了所有快速时空参数,然后分别优化了循环慢速突触参数。由此产生的完整模型再现了广泛的视网膜计算,并且具有机械可解释性,其内部单元对应于具有生物物理模型突触的视网膜中间神经元。该模型允许我们研究模型单元对任何视网膜计算的贡献,并检查长期适应如何通过视网膜通路的选择性适应改变自然场景的视网膜神经编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.

The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model [1]. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
A novel method for 12-lead ECG reconstruction. Multilevel State-Space Models Enable High Precision Event Related Potential Analysis. Topological Knowledge Distillation for Wearable Sensor Data. A Hybrid Scattering Transform for Signals with Isolated Singularities. A mechanistically interpretable model of the retinal neural code for natural scenes with multiscale adaptive dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1