激光焊接断裂指屈肌腱力学性能及热损伤的实验研究。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Biophotonics Pub Date : 2023-11-27 DOI:10.1002/jbio.202300373
Jun Huang, Jinjin Wu, Yuxin Chen, Tongyu Xu, Kehong Wang, Yunfeng Rui
{"title":"激光焊接断裂指屈肌腱力学性能及热损伤的实验研究。","authors":"Jun Huang,&nbsp;Jinjin Wu,&nbsp;Yuxin Chen,&nbsp;Tongyu Xu,&nbsp;Kehong Wang,&nbsp;Yunfeng Rui","doi":"10.1002/jbio.202300373","DOIUrl":null,"url":null,"abstract":"<p>To investigate the influence of laser parameters on the performance of tendon tissue, experiments were conducted and the process of laser-assisted tendon welding was studied. Several conclusions were drawn by analyzing the effects of laser parameters on the tensile strength, microstructure, and collagen content of tendon tissue incisions. The optimal parameters for laser welding tendon tissue were found to be a laser power of 5 W, a scanning speed of 150 mm/s, and a defocus amount of 0 mm, resulting in a laser energy density of 32.164 J/cm<sup>2</sup>. At these parameters, the percentage of inactivated cells due to thermal damage was only 23.78%, and the tensile strength of the tendon tissue incisions reached 0.61 MPa. Additionally, the collagen content around the incision was measured to be 33.679%, composed of type I and type III collagens, with the latter accounting for 50.714% of the total collagen content.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the mechanical properties and thermal damage of laser welding the ruptured flexor digitorum longus tendons\",\"authors\":\"Jun Huang,&nbsp;Jinjin Wu,&nbsp;Yuxin Chen,&nbsp;Tongyu Xu,&nbsp;Kehong Wang,&nbsp;Yunfeng Rui\",\"doi\":\"10.1002/jbio.202300373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To investigate the influence of laser parameters on the performance of tendon tissue, experiments were conducted and the process of laser-assisted tendon welding was studied. Several conclusions were drawn by analyzing the effects of laser parameters on the tensile strength, microstructure, and collagen content of tendon tissue incisions. The optimal parameters for laser welding tendon tissue were found to be a laser power of 5 W, a scanning speed of 150 mm/s, and a defocus amount of 0 mm, resulting in a laser energy density of 32.164 J/cm<sup>2</sup>. At these parameters, the percentage of inactivated cells due to thermal damage was only 23.78%, and the tensile strength of the tendon tissue incisions reached 0.61 MPa. Additionally, the collagen content around the incision was measured to be 33.679%, composed of type I and type III collagens, with the latter accounting for 50.714% of the total collagen content.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300373\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300373","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究激光参数对肌腱组织性能的影响,进行了激光辅助肌腱焊接的实验研究。通过分析激光参数对肌腱组织切口的拉伸强度、显微结构和胶原蛋白含量的影响,得出了一些结论。激光焊接肌腱组织的最佳参数为激光功率为5 W,扫描速度为150 mm/s,离焦量为0 mm,激光能量密度为32.164 J/cm2。在这些参数下,由于热损伤而失活的细胞比例仅为23.78%,肌腱组织切口的抗拉强度达到0.61 MPa。另外,测得切口周围胶原含量为33.679%,由I型胶原和III型胶原组成,后者占总胶原含量的50.714%。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the mechanical properties and thermal damage of laser welding the ruptured flexor digitorum longus tendons

To investigate the influence of laser parameters on the performance of tendon tissue, experiments were conducted and the process of laser-assisted tendon welding was studied. Several conclusions were drawn by analyzing the effects of laser parameters on the tensile strength, microstructure, and collagen content of tendon tissue incisions. The optimal parameters for laser welding tendon tissue were found to be a laser power of 5 W, a scanning speed of 150 mm/s, and a defocus amount of 0 mm, resulting in a laser energy density of 32.164 J/cm2. At these parameters, the percentage of inactivated cells due to thermal damage was only 23.78%, and the tensile strength of the tendon tissue incisions reached 0.61 MPa. Additionally, the collagen content around the incision was measured to be 33.679%, composed of type I and type III collagens, with the latter accounting for 50.714% of the total collagen content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
期刊最新文献
Front Cover Issue Information Selective induction of senescence in cancer cells through near‐infrared light treatment via mitochondrial modulation Diagnostic application in streptozotocin‐induced diabetic retinopathy rats: A study based on Raman spectroscopy and machine learning Probing polarization response of monolayer cell cultures with entangled photon pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1