Achille Nazaret, Joy Linyue Fan, Vincent-Philippe Lavallée, Cassandra Burdziak, Andrew E Cornish, Vaidotas Kiseliovas, Robert L Bowman, Ignas Masilionis, Jaeyoung Chun, Shira E Eisman, James Wang, Justin Hong, Lingting Shi, Ross L Levine, Linas Mazutis, David Blei, Dana Pe'er, Elham Azizi
{"title":"深度生成模型解读急性髓性白血病的脱轨轨迹。","authors":"Achille Nazaret, Joy Linyue Fan, Vincent-Philippe Lavallée, Cassandra Burdziak, Andrew E Cornish, Vaidotas Kiseliovas, Robert L Bowman, Ignas Masilionis, Jaeyoung Chun, Shira E Eisman, James Wang, Justin Hong, Lingting Shi, Ross L Levine, Linas Mazutis, David Blei, Dana Pe'er, Elham Azizi","doi":"10.1101/2023.11.11.566719","DOIUrl":null,"url":null,"abstract":"<p><p>Biological insights often depend on comparing conditions such as disease and health, yet we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Joint representation and visualization of derailed cell states with Decipher.\",\"authors\":\"Achille Nazaret, Joy Linyue Fan, Vincent-Philippe Lavallée, Cassandra Burdziak, Andrew E Cornish, Vaidotas Kiseliovas, Robert L Bowman, Ignas Masilionis, Jaeyoung Chun, Shira E Eisman, James Wang, Justin Hong, Lingting Shi, Ross L Levine, Linas Mazutis, David Blei, Dana Pe'er, Elham Azizi\",\"doi\":\"10.1101/2023.11.11.566719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological insights often depend on comparing conditions such as disease and health, yet we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.11.566719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.11.566719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint representation and visualization of derailed cell states with Decipher.
Biological insights often depend on comparing conditions such as disease and health, yet we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.