Nils Kroell , Xiaozheng Chen , Bastian Küppers , Sabine Schlögl , Alexander Feil , Kathrin Greiff
{"title":"基于近红外的轻包装废弃物分拣厂塑料预浓缩物质量控制","authors":"Nils Kroell , Xiaozheng Chen , Bastian Küppers , Sabine Schlögl , Alexander Feil , Kathrin Greiff","doi":"10.1016/j.resconrec.2023.107256","DOIUrl":null,"url":null,"abstract":"<div><p>Today's post-consumer plastic recycling is limited by labor-intensive manual quality control (MQC) procedures, resulting in largely unknown pre-concentrate purities. Sensor-based quality control (SBQC) could enable an automated inline quality monitoring and thus contribute to a more transparent and enhanced plastic recycling. Therefore, we investigated the technical feasibility of near-infrared-based SBQC for plastic pre-concentrates in a lightweight packaging waste sorting plant. The developed SBQC method outperformed MQC methods by reducing measurement uncertainties from between ±0.8 wt% and ±6.7 wt% (MQC) to ±0.31 wt% (SBQC) for bale-specific purities at monolayered material flow presentations. In addition, we show that SBQC may even be possible at multilayered material flow presentations, although further research is needed to address identified segregation effects. The demonstrated technical feasibility of SBQC at plant scale represents a major breakthrough as it opens new opportunities in plastic recycling, such as adaptive pricing models and intelligent process control in sorting plants.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"201 ","pages":"Article 107256"},"PeriodicalIF":11.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921344923003907/pdfft?md5=349931b631f9df4ecd32994c8b5ef384&pid=1-s2.0-S0921344923003907-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Near-infrared-based quality control of plastic pre-concentrates in lightweight-packaging waste sorting plants\",\"authors\":\"Nils Kroell , Xiaozheng Chen , Bastian Küppers , Sabine Schlögl , Alexander Feil , Kathrin Greiff\",\"doi\":\"10.1016/j.resconrec.2023.107256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today's post-consumer plastic recycling is limited by labor-intensive manual quality control (MQC) procedures, resulting in largely unknown pre-concentrate purities. Sensor-based quality control (SBQC) could enable an automated inline quality monitoring and thus contribute to a more transparent and enhanced plastic recycling. Therefore, we investigated the technical feasibility of near-infrared-based SBQC for plastic pre-concentrates in a lightweight packaging waste sorting plant. The developed SBQC method outperformed MQC methods by reducing measurement uncertainties from between ±0.8 wt% and ±6.7 wt% (MQC) to ±0.31 wt% (SBQC) for bale-specific purities at monolayered material flow presentations. In addition, we show that SBQC may even be possible at multilayered material flow presentations, although further research is needed to address identified segregation effects. The demonstrated technical feasibility of SBQC at plant scale represents a major breakthrough as it opens new opportunities in plastic recycling, such as adaptive pricing models and intelligent process control in sorting plants.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":\"201 \",\"pages\":\"Article 107256\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0921344923003907/pdfft?md5=349931b631f9df4ecd32994c8b5ef384&pid=1-s2.0-S0921344923003907-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344923003907\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344923003907","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Near-infrared-based quality control of plastic pre-concentrates in lightweight-packaging waste sorting plants
Today's post-consumer plastic recycling is limited by labor-intensive manual quality control (MQC) procedures, resulting in largely unknown pre-concentrate purities. Sensor-based quality control (SBQC) could enable an automated inline quality monitoring and thus contribute to a more transparent and enhanced plastic recycling. Therefore, we investigated the technical feasibility of near-infrared-based SBQC for plastic pre-concentrates in a lightweight packaging waste sorting plant. The developed SBQC method outperformed MQC methods by reducing measurement uncertainties from between ±0.8 wt% and ±6.7 wt% (MQC) to ±0.31 wt% (SBQC) for bale-specific purities at monolayered material flow presentations. In addition, we show that SBQC may even be possible at multilayered material flow presentations, although further research is needed to address identified segregation effects. The demonstrated technical feasibility of SBQC at plant scale represents a major breakthrough as it opens new opportunities in plastic recycling, such as adaptive pricing models and intelligent process control in sorting plants.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.