Jordi Voltas, Ramon Amigó, Tatiana A. Shestakova, Giovanni di Matteo, Raquel Díaz, Rafael Zas
{"title":"系统地理和气候塑造了一种流行针叶树的数量遗传景观和范围广泛的可塑性","authors":"Jordi Voltas, Ramon Amigó, Tatiana A. Shestakova, Giovanni di Matteo, Raquel Díaz, Rafael Zas","doi":"10.1002/ecm.1596","DOIUrl":null,"url":null,"abstract":"<p>The contribution of genetic adaptation and plasticity to intraspecific phenotypic variability remains insufficiently studied in long-lived plants, as well as the relevance of neutral versus adaptive processes determining such divergence. We examined the importance of phylogeographic structure and climate in modulating genetic and plastic changes and their interdependence in fitness-related traits of a widespread Mediterranean conifer (<i>Pinus pinaster</i>). Four marker-based, previously defined neutral classifications along with two ad hoc climate-based categorizations of 123 range-wide populations were analyzed for their capacity to summarize genetic and plastic effects of height growth and survival (age 20) in 15 common gardens. The plasticity of tree height and differential survival were interpreted through mixed modeling accounting for heteroscedasticity in the genotype-by-environment dataset. The analysis revealed a slight superiority of phylogeographic classifications over climate categorizations on the explanation of genetic and plastic effects, which suggests that neutral processes can be at least as important as isolation by climate as a driving factor of evolutionary divergence in a prevalent pine. The best phylogeographic classification involved eight geographically discrete genetic groups, which explained 92% (height) and 52% (survival) of phenotypic variability, including between-group mean differentiation and differential expression across trials. For height growth, there was high predictability of plastic group responses described by different reaction norm slopes, which were unrelated to between-group mean differentiation. The latter differences (amounting to ca. 40% among groups) dominated intraspecific performance across trials. Local adaptation was evident for genetic groups tested in their native environments in terms of tree height and, especially, survival. This finding was supported by <i>Q</i><sub>ST</sub> > <i>F</i><sub>ST</sub> estimates. Additionally, our range-wide evaluation did not support a general adaptive syndrome by which less reactive groups to ameliorated conditions would be associated with high survival and low growth. In fact, a lack of relationship between mean group differentiation, indicative of genetic adaptation, and predictable group plasticity for height growth suggests different evolutionary trajectories of these mechanisms of phenotypic divergence. Altogether, the existence of predictable adaptive-trait phenotypic variation for the species, involving both genetic differentiation and plastic effects, should facilitate integrating genomics and environment into decision-making tools to assist forests in coping with climate change.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1596","citationCount":"0","resultStr":"{\"title\":\"Phylogeography and climate shape the quantitative genetic landscape and range-wide plasticity of a prevalent conifer\",\"authors\":\"Jordi Voltas, Ramon Amigó, Tatiana A. Shestakova, Giovanni di Matteo, Raquel Díaz, Rafael Zas\",\"doi\":\"10.1002/ecm.1596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The contribution of genetic adaptation and plasticity to intraspecific phenotypic variability remains insufficiently studied in long-lived plants, as well as the relevance of neutral versus adaptive processes determining such divergence. We examined the importance of phylogeographic structure and climate in modulating genetic and plastic changes and their interdependence in fitness-related traits of a widespread Mediterranean conifer (<i>Pinus pinaster</i>). Four marker-based, previously defined neutral classifications along with two ad hoc climate-based categorizations of 123 range-wide populations were analyzed for their capacity to summarize genetic and plastic effects of height growth and survival (age 20) in 15 common gardens. The plasticity of tree height and differential survival were interpreted through mixed modeling accounting for heteroscedasticity in the genotype-by-environment dataset. The analysis revealed a slight superiority of phylogeographic classifications over climate categorizations on the explanation of genetic and plastic effects, which suggests that neutral processes can be at least as important as isolation by climate as a driving factor of evolutionary divergence in a prevalent pine. The best phylogeographic classification involved eight geographically discrete genetic groups, which explained 92% (height) and 52% (survival) of phenotypic variability, including between-group mean differentiation and differential expression across trials. For height growth, there was high predictability of plastic group responses described by different reaction norm slopes, which were unrelated to between-group mean differentiation. The latter differences (amounting to ca. 40% among groups) dominated intraspecific performance across trials. Local adaptation was evident for genetic groups tested in their native environments in terms of tree height and, especially, survival. This finding was supported by <i>Q</i><sub>ST</sub> > <i>F</i><sub>ST</sub> estimates. Additionally, our range-wide evaluation did not support a general adaptive syndrome by which less reactive groups to ameliorated conditions would be associated with high survival and low growth. In fact, a lack of relationship between mean group differentiation, indicative of genetic adaptation, and predictable group plasticity for height growth suggests different evolutionary trajectories of these mechanisms of phenotypic divergence. Altogether, the existence of predictable adaptive-trait phenotypic variation for the species, involving both genetic differentiation and plastic effects, should facilitate integrating genomics and environment into decision-making tools to assist forests in coping with climate change.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1596\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1596\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1596","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Phylogeography and climate shape the quantitative genetic landscape and range-wide plasticity of a prevalent conifer
The contribution of genetic adaptation and plasticity to intraspecific phenotypic variability remains insufficiently studied in long-lived plants, as well as the relevance of neutral versus adaptive processes determining such divergence. We examined the importance of phylogeographic structure and climate in modulating genetic and plastic changes and their interdependence in fitness-related traits of a widespread Mediterranean conifer (Pinus pinaster). Four marker-based, previously defined neutral classifications along with two ad hoc climate-based categorizations of 123 range-wide populations were analyzed for their capacity to summarize genetic and plastic effects of height growth and survival (age 20) in 15 common gardens. The plasticity of tree height and differential survival were interpreted through mixed modeling accounting for heteroscedasticity in the genotype-by-environment dataset. The analysis revealed a slight superiority of phylogeographic classifications over climate categorizations on the explanation of genetic and plastic effects, which suggests that neutral processes can be at least as important as isolation by climate as a driving factor of evolutionary divergence in a prevalent pine. The best phylogeographic classification involved eight geographically discrete genetic groups, which explained 92% (height) and 52% (survival) of phenotypic variability, including between-group mean differentiation and differential expression across trials. For height growth, there was high predictability of plastic group responses described by different reaction norm slopes, which were unrelated to between-group mean differentiation. The latter differences (amounting to ca. 40% among groups) dominated intraspecific performance across trials. Local adaptation was evident for genetic groups tested in their native environments in terms of tree height and, especially, survival. This finding was supported by QST > FST estimates. Additionally, our range-wide evaluation did not support a general adaptive syndrome by which less reactive groups to ameliorated conditions would be associated with high survival and low growth. In fact, a lack of relationship between mean group differentiation, indicative of genetic adaptation, and predictable group plasticity for height growth suggests different evolutionary trajectories of these mechanisms of phenotypic divergence. Altogether, the existence of predictable adaptive-trait phenotypic variation for the species, involving both genetic differentiation and plastic effects, should facilitate integrating genomics and environment into decision-making tools to assist forests in coping with climate change.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.