circ0005027作为ceRNA通过调节miR-548c-3p/CDH1轴影响下咽鳞状细胞癌的恶性生物学行为

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2024-08-01 Epub Date: 2023-11-29 DOI:10.1007/s10528-023-10570-y
Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He
{"title":"circ0005027作为ceRNA通过调节miR-548c-3p/CDH1轴影响下咽鳞状细胞癌的恶性生物学行为","authors":"Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He","doi":"10.1007/s10528-023-10570-y","DOIUrl":null,"url":null,"abstract":"<p><p>Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"circ0005027 Acting as a ceRNA Affects the Malignant Biological Behavior of Hypopharyngeal Squamous Cell Carcinoma by Modulating miR-548c-3p/CDH1 Axis.\",\"authors\":\"Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He\",\"doi\":\"10.1007/s10528-023-10570-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-023-10570-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-023-10570-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

下咽鳞状细胞癌(HSCC)是头颈部的恶性肿瘤。证实circ0005027在hsc组织中下调。本研究旨在探讨circ0005027在hsc中的功能和具体调控机制。收集10对hsc及癌旁组织。逆转录定量实时聚合酶链反应(RT-qPCR)检测circ0005027、miR-548c-3p和Cadherin 1 (CDH1) mRNA的表达。CCK-8分析细胞增殖活力。流式细胞术检测细胞周期及凋亡率。克隆形成法测定克隆能力。Transwell检测细胞侵袭能力。Western blot检测CDH1、LAST1、p-LAST1、MST1、p-MST1、YAP1、p-YAP1、TAZ、p-TAZ蛋白水平。双荧光素酶、RIP和RNA下拉实验鉴定了circ0005027、miR-548c-3p和CDH1之间的靶标关系。circ0005027在hsc组织和FaDu细胞中表达减少。过表达circ0005027抑制细胞活力、G1-S转化、克隆形成和侵袭,增加细胞凋亡。circ0005027作为ceRNA,降低circ0005027通过海绵化miR-548c-3p和抑制CDH1表达增强FaDu细胞的恶性过程。CDH1过表达激活YAP1/TAZ通路,抑制体外hsc生长。circ0005027可能通过调节miR-548c-3p/CDH1/ YAP1/TAZ信号通路,作为HSCC进展和预后预测的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
circ0005027 Acting as a ceRNA Affects the Malignant Biological Behavior of Hypopharyngeal Squamous Cell Carcinoma by Modulating miR-548c-3p/CDH1 Axis.

Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Association of MnSOD, CAT, and GPx1 Gene Polymorphism with Risk of Diabetic Nephropathy in South Indian Patients: A Case–Control Study Evaluating the Serum Level of ACTH and Investigating the Expression of miR-26a, miR-34a, miR-155-5p, and miR-146a in the Peripheral Blood Cells of Multiple Sclerosis Patients. Exploration of Genetic Variation and Population Structure in Bergenia ciliata for its Conservation Implications. Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs. Unveiling EFNB2 as a Key Player in Sorafenib Resistance: Insights from Bioinformatics Analysis and Functional Validation in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1