Lopamudra Mishra, Shuvadip Bhowmik, Rajveer Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi
{"title":"通过设计辅助开发D-α-生育酚聚乙二醇1000琥珀酸-吉非替尼负载阳离子脂质体的质量。","authors":"Lopamudra Mishra, Shuvadip Bhowmik, Rajveer Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.4155/tde-2023-0075","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO<sup>+</sup>) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. <b>Methods/materials:</b> Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. <b>Results:</b> GEF-TPGS-LIPO<sup>+</sup> shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. <b>Conclusion:</b> Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality by design-assisted development of D-α-tocopherol polyethylene glycol 1000 succinate-incorporated gefitinib-loaded cationic liposome(s).\",\"authors\":\"Lopamudra Mishra, Shuvadip Bhowmik, Rajveer Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi\",\"doi\":\"10.4155/tde-2023-0075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO<sup>+</sup>) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. <b>Methods/materials:</b> Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. <b>Results:</b> GEF-TPGS-LIPO<sup>+</sup> shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. <b>Conclusion:</b> Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.</p>\",\"PeriodicalId\":22959,\"journal\":{\"name\":\"Therapeutic delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Therapeutic delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/tde-2023-0075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/tde-2023-0075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Quality by design-assisted development of D-α-tocopherol polyethylene glycol 1000 succinate-incorporated gefitinib-loaded cationic liposome(s).
Aim: Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO+) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. Methods/materials: Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. Results: GEF-TPGS-LIPO+ shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. Conclusion: Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.