大尺度太阳流动力学。

IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Space Science Reviews Pub Date : 2023-01-01 Epub Date: 2023-11-17 DOI:10.1007/s11214-023-01021-6
Hideyuki Hotta, Yuto Bekki, Laurent Gizon, Quentin Noraz, Mark Rast
{"title":"大尺度太阳流动力学。","authors":"Hideyuki Hotta, Yuto Bekki, Laurent Gizon, Quentin Noraz, Mark Rast","doi":"10.1007/s11214-023-01021-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Sun's axisymmetric large-scale flows, differential rotation and meridional circulation, are thought to be maintained by the influence of rotation on the thermal-convective motions in the solar convection zone. These large-scale flows are crucial for maintaining the Sun's global magnetic field. Over the last several decades, our understanding of large-scale motions in the Sun has significantly improved, both through observational and theoretical efforts. Helioseismology has constrained the flow topology in the solar interior, and the growth of supercomputers has enabled simulations that can self-consistently generate large-scale flows in rotating spherical convective shells. In this article, we review our current understanding of solar convection and the large-scale flows present in the Sun, including those associated with the recently discovered inertial modes of oscillation. We discuss some issues still outstanding, and provide an outline of future efforts needed to address these.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 8","pages":"77"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656343/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamics of Large-Scale Solar Flows.\",\"authors\":\"Hideyuki Hotta, Yuto Bekki, Laurent Gizon, Quentin Noraz, Mark Rast\",\"doi\":\"10.1007/s11214-023-01021-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Sun's axisymmetric large-scale flows, differential rotation and meridional circulation, are thought to be maintained by the influence of rotation on the thermal-convective motions in the solar convection zone. These large-scale flows are crucial for maintaining the Sun's global magnetic field. Over the last several decades, our understanding of large-scale motions in the Sun has significantly improved, both through observational and theoretical efforts. Helioseismology has constrained the flow topology in the solar interior, and the growth of supercomputers has enabled simulations that can self-consistently generate large-scale flows in rotating spherical convective shells. In this article, we review our current understanding of solar convection and the large-scale flows present in the Sun, including those associated with the recently discovered inertial modes of oscillation. We discuss some issues still outstanding, and provide an outline of future efforts needed to address these.</p>\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"219 8\",\"pages\":\"77\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656343/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-01021-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-01021-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳的轴对称大尺度流动、微分旋转和经向环流被认为是通过旋转对太阳对流区热对流运动的影响来维持的。这些大规模的流动对于维持太阳的全球磁场至关重要。在过去的几十年里,通过观测和理论的努力,我们对太阳大规模运动的理解有了显著的提高。日震学限制了太阳内部的流动拓扑结构,超级计算机的发展使模拟能够自一致地在旋转的球形对流壳中产生大规模的流动。在这篇文章中,我们回顾了我们目前对太阳对流和太阳中存在的大规模流动的理解,包括那些与最近发现的惯性振荡模式有关的流动。我们讨论了一些仍然悬而未决的问题,并概述了解决这些问题所需的未来努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of Large-Scale Solar Flows.

The Sun's axisymmetric large-scale flows, differential rotation and meridional circulation, are thought to be maintained by the influence of rotation on the thermal-convective motions in the solar convection zone. These large-scale flows are crucial for maintaining the Sun's global magnetic field. Over the last several decades, our understanding of large-scale motions in the Sun has significantly improved, both through observational and theoretical efforts. Helioseismology has constrained the flow topology in the solar interior, and the growth of supercomputers has enabled simulations that can self-consistently generate large-scale flows in rotating spherical convective shells. In this article, we review our current understanding of solar convection and the large-scale flows present in the Sun, including those associated with the recently discovered inertial modes of oscillation. We discuss some issues still outstanding, and provide an outline of future efforts needed to address these.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
期刊最新文献
Effects of Oxytocin on Glutamate Mediated Neurotoxicity in Neuroblastoma Cell Culture. The Lucy Thermal Emission Spectrometer (L'TES) Instrument. The Comet Interceptor Mission. Multiple Probe Measurements at Uranus Motivated by Spatial Variability. The Lunar Environment Heliophysics X-ray Imager (LEXI) Mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1