组织中普遍存在的导致细胞衰老的基因。

Yilong Qu, Runze Dong, Liangcai Gu, Cliburn Chan, Jichun Xie, Carolyn Glass, Xiao-Fan Wang, Andrew B Nixon, Zhicheng Ji
{"title":"组织中普遍存在的导致细胞衰老的基因。","authors":"Yilong Qu, Runze Dong, Liangcai Gu, Cliburn Chan, Jichun Xie, Carolyn Glass, Xiao-Fan Wang, Andrew B Nixon, Zhicheng Ji","doi":"10.1101/2023.11.21.568150","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both <i>in vitro</i> and <i>in vivo</i>, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-cell and spatial detection of senescent cells using DeepScence.\",\"authors\":\"Yilong Qu, Runze Dong, Liangcai Gu, Cliburn Chan, Jichun Xie, Carolyn Glass, Xiao-Fan Wang, Andrew B Nixon, Zhicheng Ji\",\"doi\":\"10.1101/2023.11.21.568150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both <i>in vitro</i> and <i>in vivo</i>, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.11.21.568150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.21.568150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在单细胞RNA-seq数据集中,准确的细胞衰老基因集对于识别和研究衰老细胞至关重要。我们整合了9个现有的衰老基因集,并确定了一个核心衰老基因集,包括四个基因:CDKN1A、CDKN2A、IL6和CDKN2B。我们发现这些基因普遍与人类和小鼠组织中的细胞衰老有关。利用该基因集,我们在人类和小鼠单细胞数据集中鉴定了富含衰老细胞的细胞类型以及与细胞衰老相关的细胞-细胞通信靶点和途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell and spatial detection of senescent cells using DeepScence.

Accurately identifying senescent cells is essential for studying their spatial and molecular features. We developed DeepScence, a method based on deep neural networks, to identify senescent cells in single-cell and spatial transcriptomics data. DeepScence is based on CoreScence, a senescence-associated gene set we curated that incorporates information from multiple published gene sets. We demonstrate that DeepScence can accurately identify senescent cells in single-cell gene expression data collected both in vitro and in vivo, as well as in spatial transcriptomics data generated by different platforms, substantially outperforming existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CRISPRi-based screens in iAssembloids to elucidate neuron-glia interactions. Evaluating Study Design Rigor in Preclinical Cardiovascular Research: A Replication Study. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. Disease modification upon brief exposure to tofacitinib during chronic epilepsy. Efficient differential expression analysis of large-scale single cell transcriptomics data using dreamlet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1