{"title":"CS-UNet:用于视网膜血管分割的具有语义位置依赖性的跨尺度 U-Net","authors":"Ying Yang, Shengbin Yue, Haiyan Quan","doi":"10.1080/0954898X.2023.2288858","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate retinal vessel segmentation is the prerequisite for early recognition and treatment of retina-related diseases. However, segmenting retinal vessels is still challenging due to the intricate vessel tree in fundus images, which has a significant number of tiny vessels, low contrast, and lesion interference. For this task, the u-shaped architecture (U-Net) has become the de-facto standard and has achieved considerable success. However, U-Net is a pure convolutional network, which usually shows limitations in global modelling. In this paper, we propose a novel Cross-scale U-Net with Semantic-position Dependencies (CS-UNet) for retinal vessel segmentation. In particular, we first designed a Semantic-position Dependencies Aggregator (SPDA) and incorporate it into each layer of the encoder to better focus on global contextual information by integrating the relationship of semantic and position. To endow the model with the capability of cross-scale interaction, the Cross-scale Relation Refine Module (CSRR) is designed to dynamically select the information associated with the vessels, which helps guide the up-sampling operation. Finally, we have evaluated CS-UNet on three public datasets: DRIVE, CHASE_DB1, and STARE. Compared to most existing state-of-the-art methods, CS-UNet demonstrated better performance.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"134-153"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CS-UNet: Cross-scale U-Net with Semantic-position dependencies for retinal vessel segmentation.\",\"authors\":\"Ying Yang, Shengbin Yue, Haiyan Quan\",\"doi\":\"10.1080/0954898X.2023.2288858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate retinal vessel segmentation is the prerequisite for early recognition and treatment of retina-related diseases. However, segmenting retinal vessels is still challenging due to the intricate vessel tree in fundus images, which has a significant number of tiny vessels, low contrast, and lesion interference. For this task, the u-shaped architecture (U-Net) has become the de-facto standard and has achieved considerable success. However, U-Net is a pure convolutional network, which usually shows limitations in global modelling. In this paper, we propose a novel Cross-scale U-Net with Semantic-position Dependencies (CS-UNet) for retinal vessel segmentation. In particular, we first designed a Semantic-position Dependencies Aggregator (SPDA) and incorporate it into each layer of the encoder to better focus on global contextual information by integrating the relationship of semantic and position. To endow the model with the capability of cross-scale interaction, the Cross-scale Relation Refine Module (CSRR) is designed to dynamically select the information associated with the vessels, which helps guide the up-sampling operation. Finally, we have evaluated CS-UNet on three public datasets: DRIVE, CHASE_DB1, and STARE. Compared to most existing state-of-the-art methods, CS-UNet demonstrated better performance.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"134-153\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2288858\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2288858","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
CS-UNet: Cross-scale U-Net with Semantic-position dependencies for retinal vessel segmentation.
Accurate retinal vessel segmentation is the prerequisite for early recognition and treatment of retina-related diseases. However, segmenting retinal vessels is still challenging due to the intricate vessel tree in fundus images, which has a significant number of tiny vessels, low contrast, and lesion interference. For this task, the u-shaped architecture (U-Net) has become the de-facto standard and has achieved considerable success. However, U-Net is a pure convolutional network, which usually shows limitations in global modelling. In this paper, we propose a novel Cross-scale U-Net with Semantic-position Dependencies (CS-UNet) for retinal vessel segmentation. In particular, we first designed a Semantic-position Dependencies Aggregator (SPDA) and incorporate it into each layer of the encoder to better focus on global contextual information by integrating the relationship of semantic and position. To endow the model with the capability of cross-scale interaction, the Cross-scale Relation Refine Module (CSRR) is designed to dynamically select the information associated with the vessels, which helps guide the up-sampling operation. Finally, we have evaluated CS-UNet on three public datasets: DRIVE, CHASE_DB1, and STARE. Compared to most existing state-of-the-art methods, CS-UNet demonstrated better performance.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.