Pham Duc Tai, Krit Jinawat, Jirachai Buddhakulsomsiri
{"title":"绿色多级配电网设计的模糊多目标线性规划方法","authors":"Pham Duc Tai, Krit Jinawat, Jirachai Buddhakulsomsiri","doi":"10.1108/jm2-05-2023-0101","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented <em>ε</em>-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>For the applicability of the model, the results indicate that the augmented <em>ε</em>-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented <em>ε</em>-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy multiobjective linear programming approach for green multiechelon distribution network design\",\"authors\":\"Pham Duc Tai, Krit Jinawat, Jirachai Buddhakulsomsiri\",\"doi\":\"10.1108/jm2-05-2023-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented <em>ε</em>-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>For the applicability of the model, the results indicate that the augmented <em>ε</em>-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented <em>ε</em>-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.</p><!--/ Abstract__block -->\",\"PeriodicalId\":16349,\"journal\":{\"name\":\"Journal of Modelling in Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modelling in Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jm2-05-2023-0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-05-2023-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
A fuzzy multiobjective linear programming approach for green multiechelon distribution network design
Purpose
Distribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.
Design/methodology/approach
The problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.
Findings
For the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.
Originality/value
The proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.