在服务器功率建模中结合全局回归和局部逼近

IF 2.4 Q1 Computer Science SICS Software-Intensive Cyber-Physical Systems Pub Date : 2018-05-02 DOI:10.1007/s00450-018-0391-x
Xiaoming Du, Cong Li
{"title":"在服务器功率建模中结合全局回归和局部逼近","authors":"Xiaoming Du, Cong Li","doi":"10.1007/s00450-018-0391-x","DOIUrl":null,"url":null,"abstract":"To evaluate energy use in green clusters, power models take the resource utilization data as the input to predict server power consumption. We propose a novel method in power modeling combining a global linear model and a local approximation model. The new model enjoys high accuracy by compensating the global linear model with local approximation and exhibits robustness with the generalization capability of the global regression model. Empirical evaluation demonstrates that the new approach outperforms the two existing approaches to server power modeling, the linear model and the k-nearest neighbor regression model.","PeriodicalId":41265,"journal":{"name":"SICS Software-Intensive Cyber-Physical Systems","volume":"312 1","pages":"35-43"},"PeriodicalIF":2.4000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining global regression and local approximation in server power modeling\",\"authors\":\"Xiaoming Du, Cong Li\",\"doi\":\"10.1007/s00450-018-0391-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To evaluate energy use in green clusters, power models take the resource utilization data as the input to predict server power consumption. We propose a novel method in power modeling combining a global linear model and a local approximation model. The new model enjoys high accuracy by compensating the global linear model with local approximation and exhibits robustness with the generalization capability of the global regression model. Empirical evaluation demonstrates that the new approach outperforms the two existing approaches to server power modeling, the linear model and the k-nearest neighbor regression model.\",\"PeriodicalId\":41265,\"journal\":{\"name\":\"SICS Software-Intensive Cyber-Physical Systems\",\"volume\":\"312 1\",\"pages\":\"35-43\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICS Software-Intensive Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00450-018-0391-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICS Software-Intensive Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00450-018-0391-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

为了评估绿色集群的能源使用情况,功率模型将资源利用数据作为输入来预测服务器的功耗。提出了一种结合全局线性模型和局部近似模型的功率建模新方法。该模型通过局部逼近补偿全局线性模型,具有较高的精度,同时具有全局回归模型的泛化能力,具有较强的鲁棒性。实证评估表明,新方法优于现有的两种服务器功率建模方法,即线性模型和k近邻回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining global regression and local approximation in server power modeling
To evaluate energy use in green clusters, power models take the resource utilization data as the input to predict server power consumption. We propose a novel method in power modeling combining a global linear model and a local approximation model. The new model enjoys high accuracy by compensating the global linear model with local approximation and exhibits robustness with the generalization capability of the global regression model. Empirical evaluation demonstrates that the new approach outperforms the two existing approaches to server power modeling, the linear model and the k-nearest neighbor regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SICS Software-Intensive Cyber-Physical Systems
SICS Software-Intensive Cyber-Physical Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
自引率
0.00%
发文量
0
期刊最新文献
Beyond the limitations of real-time scheduling theory: a unified scheduling theory for the analysis of real-time systems Automating integration under emergent constraints for embedded systems A new enhanced cyber security framework for medical cyber physical systems The 13th advanced summer school on service-oriented computing Special issue on engineering collaborative embedded systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1