{"title":"整个绿色谱系的核心微生物群。","authors":"Paloma Durán","doi":"10.1016/j.pbi.2023.102487","DOIUrl":null,"url":null,"abstract":"<div><p>The study of plant–microbe interactions and the characterization of plant-associated microbiota has been the focus of plant researchers in the last decades due to its importance for plant health in natural conditions. Here, I explore the persistent core microbiota associated with different plant species and across different environments by performing a meta-analysis of publicly available datasets. Intra-specific analyses revealed that diverse plant genotypes growing in similar habitats interact with a common set of microbial groups but that some of these core groups are species- or environment-specific. Furthermore, interspecific meta-analysis demonstrates the conservation of seven bacterial orders across diverse photosynthetic organisms, including microalgae, suggesting a conserved capacity for interaction with these core microbes throughout evolutionary history. However, the specific functions of these core members and whether these functions are conserved across hosts remain largely unexplored. I therefore discuss the importance of understanding the roles of the core microbiota and propose future research directions, including the exploration of microbial interactions across different kingdoms. By investigating the core microbiota and its functions, it will be possible to leverage this knowledge for sustainable agricultural management and conservation goals.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526623001528/pdfft?md5=509b8cb71221700c574b88497674ea67&pid=1-s2.0-S1369526623001528-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The core microbiota across the green lineage\",\"authors\":\"Paloma Durán\",\"doi\":\"10.1016/j.pbi.2023.102487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of plant–microbe interactions and the characterization of plant-associated microbiota has been the focus of plant researchers in the last decades due to its importance for plant health in natural conditions. Here, I explore the persistent core microbiota associated with different plant species and across different environments by performing a meta-analysis of publicly available datasets. Intra-specific analyses revealed that diverse plant genotypes growing in similar habitats interact with a common set of microbial groups but that some of these core groups are species- or environment-specific. Furthermore, interspecific meta-analysis demonstrates the conservation of seven bacterial orders across diverse photosynthetic organisms, including microalgae, suggesting a conserved capacity for interaction with these core microbes throughout evolutionary history. However, the specific functions of these core members and whether these functions are conserved across hosts remain largely unexplored. I therefore discuss the importance of understanding the roles of the core microbiota and propose future research directions, including the exploration of microbial interactions across different kingdoms. By investigating the core microbiota and its functions, it will be possible to leverage this knowledge for sustainable agricultural management and conservation goals.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526623001528/pdfft?md5=509b8cb71221700c574b88497674ea67&pid=1-s2.0-S1369526623001528-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526623001528\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526623001528","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The study of plant–microbe interactions and the characterization of plant-associated microbiota has been the focus of plant researchers in the last decades due to its importance for plant health in natural conditions. Here, I explore the persistent core microbiota associated with different plant species and across different environments by performing a meta-analysis of publicly available datasets. Intra-specific analyses revealed that diverse plant genotypes growing in similar habitats interact with a common set of microbial groups but that some of these core groups are species- or environment-specific. Furthermore, interspecific meta-analysis demonstrates the conservation of seven bacterial orders across diverse photosynthetic organisms, including microalgae, suggesting a conserved capacity for interaction with these core microbes throughout evolutionary history. However, the specific functions of these core members and whether these functions are conserved across hosts remain largely unexplored. I therefore discuss the importance of understanding the roles of the core microbiota and propose future research directions, including the exploration of microbial interactions across different kingdoms. By investigating the core microbiota and its functions, it will be possible to leverage this knowledge for sustainable agricultural management and conservation goals.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.