行人过马路决策:比较不同的漂移扩散模型

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS International Journal of Human-Computer Studies Pub Date : 2023-11-30 DOI:10.1016/j.ijhcs.2023.103200
Max Theisen , Caroline Schießl , Wolfgang Einhäuser , Gustav Markkula
{"title":"行人过马路决策:比较不同的漂移扩散模型","authors":"Max Theisen ,&nbsp;Caroline Schießl ,&nbsp;Wolfgang Einhäuser ,&nbsp;Gustav Markkula","doi":"10.1016/j.ijhcs.2023.103200","DOIUrl":null,"url":null,"abstract":"<div><p>The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian–vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.</p></div>","PeriodicalId":54955,"journal":{"name":"International Journal of Human-Computer Studies","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071581923002094/pdfft?md5=52f336fec4e4e6201112f6b9c5127373&pid=1-s2.0-S1071581923002094-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models\",\"authors\":\"Max Theisen ,&nbsp;Caroline Schießl ,&nbsp;Wolfgang Einhäuser ,&nbsp;Gustav Markkula\",\"doi\":\"10.1016/j.ijhcs.2023.103200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian–vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.</p></div>\",\"PeriodicalId\":54955,\"journal\":{\"name\":\"International Journal of Human-Computer Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1071581923002094/pdfft?md5=52f336fec4e4e6201112f6b9c5127373&pid=1-s2.0-S1071581923002094-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Human-Computer Studies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071581923002094\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human-Computer Studies","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071581923002094","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

是过马路还是等车通过,人类经常毫不费力地做出决定。近年来,漂移扩散模型(DDMs)在行人决策中的应用已被证明对行人-车辆相互作用中穿越行为的建模很有用。这些模型认为二元决策是随着时间的推移,噪声证据的增量积累,直到达到两个选择阈值之一(跨越或不跨越)。一个悬而未决的问题是,在以往的人行横道ddm中所做的运动学相关漂移扩散过程的假设是否合理,ddm参数会随着交通状况的发展而随时间变化。目前尚不清楚运动学相关ddm是否比传统ddm提供更好的模型拟合,传统ddm是根据条件拟合的。此外,以前的ddm没有考虑不交叉选项的反应时间。我们通过结合建模的新颖实验设计来解决这些问题。在实验中,我们使用了一个双选项强迫选择范例,参与者从行人的角度观看接近车辆的视频,并回答他们是想在汽车之前过马路还是等到汽车过去。使用这些数据,我们在运动学相关和条件相关的ddm之间进行了彻底的模型比较。我们的结果表明,条件拟合的ddm比运动学相关的ddm具有更好的模型拟合,这反映在均方误差中。条件拟合模型需要相当多的参数,但在某些情况下,在惩罚参数数量的措施(例如,赤池信息准则)中,仍然优于运动学相关的ddm。引入起点偏差为从车辆距离的初始视角快速积累早期证据的新假设提供了支持。条件拟合模型获得的漂移率与运动学相关模型中的假设一致,证实行人的决策过程与运动学相关。然而,在模型选择中对条件拟合模型的部分偏好表明,尚未确定所有ddm参数的正确运动学依赖形式,这表明当前人行过路ddm的改进空间。开发更准确的人类认知过程模型,可能有助于自动驾驶汽车理解行人的意图,并在未来与人类的交通互动中表现出明确的类人行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pedestrians’ road-crossing decisions: Comparing different drift-diffusion models

The decision of whether to cross a road or wait for a car to pass, humans make frequently and effortlessly. Recently, the application of drift-diffusion models (DDMs) on pedestrians’ decision-making has proven useful in modelling crossing behaviour in pedestrian–vehicle interactions. These models consider binary decision-making as an incremental accumulation of noisy evidence over time until one of two choice thresholds (to cross or not) is reached. One open question is whether the assumption of a kinematics-dependent drift-diffusion process, which was made in previous pedestrian crossing DDMs, is justified, with DDM-parameters varying over time according to the developing traffic situation. It is currently unknown whether kinematics-dependent DDMs provide a better model fit than conventional DDMs, which are fitted per condition. Furthermore, previous DDMs have not considered reaction times for the not-crossing option. We address these issues by a novel experimental design combined with modelling. Experimentally, we use a 2-alternative-forced-choice paradigm, where participants view videos of approaching cars from a pedestrian’s perspective and respond whether they want to cross before the car or to wait until the car has passed. Using these data, we perform thorough model comparison between kinematics-dependent and condition-wise fitted DDMs. Our results demonstrate that condition-wise fitted DDMs can show better model fits than kinematics-dependent DDMs as reflected in the mean-squared-errors. The condition-wise fitted models need considerably more parameters, but in some cases still outperform kinematics-dependent DDMs in measures that penalize the parameter number (e.g., Akaike information criterion). Introducing a starting point bias provides support for the novel hypothesis of rapid early evidence build-up from the initial view of the vehicle distance. The drift rates obtained for the condition-wise fitted models align with the assumptions in the kinematics-dependent models, confirming that pedestrians’ decision processes are kinematics-dependent. However, the partial preference for condition-wise fitted models in the model selection suggests that the correct form of kinematics-dependence has not yet been identified for all DDM-parameters, indicating room for improvement of current pedestrian crossing DDMs. Developing more accurate models of human cognitive processes will likely facilitate autonomous vehicles to understand pedestrians’ intentions as well as to show unambiguous human-like behaviour in future traffic interactions with humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Human-Computer Studies
International Journal of Human-Computer Studies 工程技术-计算机:控制论
CiteScore
11.50
自引率
5.60%
发文量
108
审稿时长
3 months
期刊介绍: The International Journal of Human-Computer Studies publishes original research over the whole spectrum of work relevant to the theory and practice of innovative interactive systems. The journal is inherently interdisciplinary, covering research in computing, artificial intelligence, psychology, linguistics, communication, design, engineering, and social organization, which is relevant to the design, analysis, evaluation and application of innovative interactive systems. Papers at the boundaries of these disciplines are especially welcome, as it is our view that interdisciplinary approaches are needed for producing theoretical insights in this complex area and for effective deployment of innovative technologies in concrete user communities. Research areas relevant to the journal include, but are not limited to: • Innovative interaction techniques • Multimodal interaction • Speech interaction • Graphic interaction • Natural language interaction • Interaction in mobile and embedded systems • Interface design and evaluation methodologies • Design and evaluation of innovative interactive systems • User interface prototyping and management systems • Ubiquitous computing • Wearable computers • Pervasive computing • Affective computing • Empirical studies of user behaviour • Empirical studies of programming and software engineering • Computer supported cooperative work • Computer mediated communication • Virtual reality • Mixed and augmented Reality • Intelligent user interfaces • Presence ...
期刊最新文献
How do people experience the images created by generative artificial intelligence? An exploration of people's perceptions, appraisals, and emotions related to a Gen-AI text-to-image model and its creations Editorial Board A gaze-based driver distraction countermeasure: Comparing effects of multimodal alerts on driver's behavior and visual attention Impact of interaction technique in interactive data visualisations: A study on lookup, comparison, and relation-seeking tasks Keeping Fit & Staying Safe: A Systematic Review of Women's Use of Social Media for Fitness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1