{"title":"粉末薄板增材制造:多材料印刷的原理和能力","authors":"Wenyou Zhang , Arnoldas Sasnauskas , Asli Coban , Silvia Marola , Riccardo Casati , Shuo Yin , Ramesh Padamati Babu , Rocco Lupoi","doi":"10.1016/j.addlet.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel Metal Additive Manufacturing using Powder sheets (MAPS) method for printing multi-material composites in one process is proposed. MAPS employs powder sheets (i.e. metal powder-polymer matrix flexible films) as the feedstock material. Its key advantages include a relatively rapid change from one material to another and a minimum wastage of materials due to the elimination of the powder bed. The powder sheets were fabricated using a ‘solvent casting’ method. They were then employed in a commercialised metal printer for printing metal multi-material composites. To prove the disruptive concept of MAPS, a 60-layer trimetallic multi-material composite (304 L stainless steel, In718 and CoCrFeMnNi high entropy alloy) was additively manufactured using three different types of powder sheet material in the same manufacturing system for the first time. Experimental results indicate a high density (99.80 %) multi-material composites was printed by MAPS. EDX and SEM observations of the multi-material composites revealed variations of chemical composition and microstructure along the build direction. The newly proposed MAPS manufacturing method and results of this study provide insights into a new avenue for multi-material metallic parts.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"8 ","pages":"Article 100187"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369023000671/pdfft?md5=35681362891a05aaff158ed65c979e8b&pid=1-s2.0-S2772369023000671-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Powder sheets additive manufacturing: Principles and capabilities for multi-material printing\",\"authors\":\"Wenyou Zhang , Arnoldas Sasnauskas , Asli Coban , Silvia Marola , Riccardo Casati , Shuo Yin , Ramesh Padamati Babu , Rocco Lupoi\",\"doi\":\"10.1016/j.addlet.2023.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a novel Metal Additive Manufacturing using Powder sheets (MAPS) method for printing multi-material composites in one process is proposed. MAPS employs powder sheets (i.e. metal powder-polymer matrix flexible films) as the feedstock material. Its key advantages include a relatively rapid change from one material to another and a minimum wastage of materials due to the elimination of the powder bed. The powder sheets were fabricated using a ‘solvent casting’ method. They were then employed in a commercialised metal printer for printing metal multi-material composites. To prove the disruptive concept of MAPS, a 60-layer trimetallic multi-material composite (304 L stainless steel, In718 and CoCrFeMnNi high entropy alloy) was additively manufactured using three different types of powder sheet material in the same manufacturing system for the first time. Experimental results indicate a high density (99.80 %) multi-material composites was printed by MAPS. EDX and SEM observations of the multi-material composites revealed variations of chemical composition and microstructure along the build direction. The newly proposed MAPS manufacturing method and results of this study provide insights into a new avenue for multi-material metallic parts.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"8 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000671/pdfft?md5=35681362891a05aaff158ed65c979e8b&pid=1-s2.0-S2772369023000671-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Powder sheets additive manufacturing: Principles and capabilities for multi-material printing
In this work, a novel Metal Additive Manufacturing using Powder sheets (MAPS) method for printing multi-material composites in one process is proposed. MAPS employs powder sheets (i.e. metal powder-polymer matrix flexible films) as the feedstock material. Its key advantages include a relatively rapid change from one material to another and a minimum wastage of materials due to the elimination of the powder bed. The powder sheets were fabricated using a ‘solvent casting’ method. They were then employed in a commercialised metal printer for printing metal multi-material composites. To prove the disruptive concept of MAPS, a 60-layer trimetallic multi-material composite (304 L stainless steel, In718 and CoCrFeMnNi high entropy alloy) was additively manufactured using three different types of powder sheet material in the same manufacturing system for the first time. Experimental results indicate a high density (99.80 %) multi-material composites was printed by MAPS. EDX and SEM observations of the multi-material composites revealed variations of chemical composition and microstructure along the build direction. The newly proposed MAPS manufacturing method and results of this study provide insights into a new avenue for multi-material metallic parts.