面向5G无线应用的先进功率放大器设计分析:调研

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Analog Integrated Circuits and Signal Processing Pub Date : 2023-11-15 DOI:10.1007/s10470-023-02193-5
Muhammad Noaman Zahid, Fayyaz Javeed, Gaofeng Zhu
{"title":"面向5G无线应用的先进功率放大器设计分析:调研","authors":"Muhammad Noaman Zahid,&nbsp;Fayyaz Javeed,&nbsp;Gaofeng Zhu","doi":"10.1007/s10470-023-02193-5","DOIUrl":null,"url":null,"abstract":"<div><p>A power amplifier (PA) is the most essential and crucial block for effective wireless communication in radio frequency (RF) frontend. PAs are employed to amplify the input signal to the appropriate output power level while consuming less DC power and producing high efficiency. Furthermore, current PA designs in nano or micro scales complementary metal oxide semiconductor (CMOS) technology have inherent limitations, including the hot electron effect and oxide breakdown. According to the literature, the performance of the PA directly influences the efficiency of any transmitter. The main purpose of the article is to provide a comprehensive overview, analysis, and quantitative comparison of the most promising RF PA architectures that have previously reported. The key focus of reviewed articles is PAs that were implemented using scalable CMOS technology with adequate output power for portable wireless devices at 2.4 GHz industrial, scientific, and medical band and 5G frequency ranges. The presented comparative study may help future work on wireless RF devices.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design analysis of advanced power amplifiers for 5G wireless applications: a survey\",\"authors\":\"Muhammad Noaman Zahid,&nbsp;Fayyaz Javeed,&nbsp;Gaofeng Zhu\",\"doi\":\"10.1007/s10470-023-02193-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A power amplifier (PA) is the most essential and crucial block for effective wireless communication in radio frequency (RF) frontend. PAs are employed to amplify the input signal to the appropriate output power level while consuming less DC power and producing high efficiency. Furthermore, current PA designs in nano or micro scales complementary metal oxide semiconductor (CMOS) technology have inherent limitations, including the hot electron effect and oxide breakdown. According to the literature, the performance of the PA directly influences the efficiency of any transmitter. The main purpose of the article is to provide a comprehensive overview, analysis, and quantitative comparison of the most promising RF PA architectures that have previously reported. The key focus of reviewed articles is PAs that were implemented using scalable CMOS technology with adequate output power for portable wireless devices at 2.4 GHz industrial, scientific, and medical band and 5G frequency ranges. The presented comparative study may help future work on wireless RF devices.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-023-02193-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02193-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

功率放大器是射频前端实现有效无线通信的最基本、最关键的模块。放大器用于将输入信号放大到适当的输出功率水平,同时消耗较少的直流功率并产生高效率。此外,目前纳米或微尺度互补金属氧化物半导体(CMOS)技术的PA设计存在固有的局限性,包括热电子效应和氧化物击穿。根据文献,扩音器的性能直接影响发射机的效率。本文的主要目的是对以前报道过的最有前途的RF PA架构进行全面的概述、分析和定量比较。回顾文章的重点是使用可扩展CMOS技术实现的pa,该技术具有足够的输出功率,适用于2.4 GHz工业、科学和医疗频段以及5G频率范围的便携式无线设备。本文的比较研究对未来无线射频器件的研究有一定的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design analysis of advanced power amplifiers for 5G wireless applications: a survey

A power amplifier (PA) is the most essential and crucial block for effective wireless communication in radio frequency (RF) frontend. PAs are employed to amplify the input signal to the appropriate output power level while consuming less DC power and producing high efficiency. Furthermore, current PA designs in nano or micro scales complementary metal oxide semiconductor (CMOS) technology have inherent limitations, including the hot electron effect and oxide breakdown. According to the literature, the performance of the PA directly influences the efficiency of any transmitter. The main purpose of the article is to provide a comprehensive overview, analysis, and quantitative comparison of the most promising RF PA architectures that have previously reported. The key focus of reviewed articles is PAs that were implemented using scalable CMOS technology with adequate output power for portable wireless devices at 2.4 GHz industrial, scientific, and medical band and 5G frequency ranges. The presented comparative study may help future work on wireless RF devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
期刊最新文献
FPGA-based implementation and verification of hybrid security algorithm for NoC architecture A multiple resonant microstrip patch heart shape antenna for satellite and Wi-Fi communication Low power content addressable memory using common match line scheme for high performance processors An ultra-low power fully CMOS sub-bandgap reference in weak inversion Secure and reliable communication using memristor-based chaotic circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1