基于机器学习的光纤激光器发展:回顾与展望

IF 15.7 Q1 OPTICS PhotoniX Pub Date : 2022-07-13 DOI:10.1186/s43074-022-00055-3
Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, Pu Zhou
{"title":"基于机器学习的光纤激光器发展:回顾与展望","authors":"Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, Pu Zhou","doi":"10.1186/s43074-022-00055-3","DOIUrl":null,"url":null,"abstract":"<p>In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.</p>","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"160 9","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fiber laser development enabled by machine learning: review and prospect\",\"authors\":\"Min Jiang, Hanshuo Wu, Yi An, Tianyue Hou, Qi Chang, Liangjin Huang, Jun Li, Rongtao Su, Pu Zhou\",\"doi\":\"10.1186/s43074-022-00055-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.</p>\",\"PeriodicalId\":93483,\"journal\":{\"name\":\"PhotoniX\",\"volume\":\"160 9\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PhotoniX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43074-022-00055-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-022-00055-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

摘要

近年来,机器学习,特别是各种深度神经网络,作为一种新兴的数据分析和处理技术,为光纤激光器的发展带来了新的见解,特别是复杂的、动态的或对干扰敏感的光纤激光器系统。本文重点介绍了最近在光纤激光领域采用机器学习的有吸引力的研究,包括按需激光输出的设计和操作,非线性效应的预测和控制,激光特性的重建和评估,以及激光器和激光系统的鲁棒控制。我们还评论了挑战和未来的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fiber laser development enabled by machine learning: review and prospect

In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Deep-learning-enabled temporally super-resolved multiplexed fringe projection profilometry: high-speed kHz 3D imaging with low-speed camera Optical steelyard: high-resolution and wide-range refractive index sensing by synergizing Fabry–Perot interferometer with metafibers Ultra-low-defect homoepitaxial micro-LEDs with enhanced efficiency and monochromaticity for high-PPI AR/MR displays Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy Ultrahigh-fidelity full-color holographic display via color-aware optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1