使用条件生成对抗和增强的转换器进行数据到文本的生成

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Language Engineering Pub Date : 2023-11-28 DOI:10.1017/s1351324923000487
Elham Seifossadat, Hossein Sameti
{"title":"使用条件生成对抗和增强的转换器进行数据到文本的生成","authors":"Elham Seifossadat, Hossein Sameti","doi":"10.1017/s1351324923000487","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an enhanced version of the vanilla transformer for data-to-text generation and then use it as the generator of a conditional generative adversarial model to improve the semantic quality and diversity of output sentences. Specifically, by adding a diagonal mask matrix to the attention scores of the encoder and using the history of the attention weights in the decoder, this enhanced version of the vanilla transformer prevents semantic defects in the output text. Also, using this enhanced transformer along with a triplet network, respectively, as the generator and discriminator of conditional generative adversarial network, diversity and semantic quality of sentences are guaranteed. To prove the effectiveness of the proposed model, called conditional generative adversarial with enhanced transformer (CGA-ET), we performed experiments on three different datasets and observed that our proposed model is able to achieve better results than the baselines models in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr, BERTScore, and SER automatic evaluation metrics as well as human evaluation.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"212 ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-to-text generation using conditional generative adversarial with enhanced transformer\",\"authors\":\"Elham Seifossadat, Hossein Sameti\",\"doi\":\"10.1017/s1351324923000487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an enhanced version of the vanilla transformer for data-to-text generation and then use it as the generator of a conditional generative adversarial model to improve the semantic quality and diversity of output sentences. Specifically, by adding a diagonal mask matrix to the attention scores of the encoder and using the history of the attention weights in the decoder, this enhanced version of the vanilla transformer prevents semantic defects in the output text. Also, using this enhanced transformer along with a triplet network, respectively, as the generator and discriminator of conditional generative adversarial network, diversity and semantic quality of sentences are guaranteed. To prove the effectiveness of the proposed model, called conditional generative adversarial with enhanced transformer (CGA-ET), we performed experiments on three different datasets and observed that our proposed model is able to achieve better results than the baselines models in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr, BERTScore, and SER automatic evaluation metrics as well as human evaluation.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\"212 \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324923000487\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324923000487","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个用于数据到文本生成的香草转换器的增强版本,然后将其用作条件生成对抗模型的生成器,以提高输出句子的语义质量和多样性。具体来说,通过向编码器的注意力分数添加对角掩码矩阵,并使用解码器中注意力权重的历史记录,这个增强版的香草转换器可以防止输出文本中的语义缺陷。同时,将该增强的变压器与一个三重网络分别作为条件生成对抗网络的生成器和判别器,保证了句子的多样性和语义质量。为了证明所提出的条件生成对抗增强变压器(CGA-ET)模型的有效性,我们在三个不同的数据集上进行了实验,并观察到我们所提出的模型在BLEU、METEOR、NIST、ROUGE-L、CIDEr、BERTScore和SER自动评估指标以及人类评估方面能够取得比基线模型更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-to-text generation using conditional generative adversarial with enhanced transformer
In this paper, we propose an enhanced version of the vanilla transformer for data-to-text generation and then use it as the generator of a conditional generative adversarial model to improve the semantic quality and diversity of output sentences. Specifically, by adding a diagonal mask matrix to the attention scores of the encoder and using the history of the attention weights in the decoder, this enhanced version of the vanilla transformer prevents semantic defects in the output text. Also, using this enhanced transformer along with a triplet network, respectively, as the generator and discriminator of conditional generative adversarial network, diversity and semantic quality of sentences are guaranteed. To prove the effectiveness of the proposed model, called conditional generative adversarial with enhanced transformer (CGA-ET), we performed experiments on three different datasets and observed that our proposed model is able to achieve better results than the baselines models in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr, BERTScore, and SER automatic evaluation metrics as well as human evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Language Engineering
Natural Language Engineering COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
12.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.
期刊最新文献
Start-up activity in the LLM ecosystem Anisotropic span embeddings and the negative impact of higher-order inference for coreference resolution: An empirical analysis Automated annotation of parallel bible corpora with cross-lingual semantic concordance How do control tokens affect natural language generation tasks like text simplification Emerging trends: When can users trust GPT, and when should they intervene?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1