Cheng-Xuan Li, Bao-Dong Wang, Kan Chen, Gui-Peng Yang, Jian-Fang Chen, Li-Na Lin, Zi-Cheng Wang
{"title":"太平洋北极夏季生物源硫的分布和排放对太平洋流入增强的响应","authors":"Cheng-Xuan Li, Bao-Dong Wang, Kan Chen, Gui-Peng Yang, Jian-Fang Chen, Li-Na Lin, Zi-Cheng Wang","doi":"10.1002/lno.12458","DOIUrl":null,"url":null,"abstract":"<p>The inflow of warm and nutrient-rich Pacific Water (PW) through the Bering Strait into the Arctic Ocean is likely to have far-reaching consequences for the ecosystem and biogenic sulfur cycle in the Earth's sensitive subarctic–arctic region of the Pacific sector, even impacting climate change under global warming scenarios. We performed a detailed biogeochemical study of summer biogenic sulfur cycling from cold (2012) to warm (2014) years in the Bering Strait and the Chukchi Sea, so as to highlight the importance of enhanced Pacific inflow in driving dimethylsulfide (DMS) variability. In the Bering Strait, the enhanced Pacific inflow led to the vertical expansion of the eastern high-DMS regions due to the vertical extension of Alaska Coastal Water, and the horizontal expansion of the western surface high-DMS regions due to the westward intrusion of Bering Shelf Water. The enhanced extension of PW potentially stimulated seawater warming, the northward retreat of the ice edge, and the enlargement of sea ice-free areas in the Chukchi Sea. The northern ice melting zone at 71°N with a bloom of phytoplankton was an area of locally high dimethylsulfoniopropionate concentrations and slow DMS consumption in 2012. A hotspot for dimethylated sulfur compound concentrations and DMS sea–air flux occurred in the convergence region near 67.7°N during 2014, due to enhanced mixing caused by increased Bering Sea Water. Owing to the increased advection of PW during 2012–2014, surface DMS and its emission to the atmosphere increased sharply by threefold in the Chukchi Sea.</p>","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"69 1","pages":"81-103"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of distributions and emissions of summer biogenic sulfur in the Pacific Arctic to enhanced Pacific Water inflow\",\"authors\":\"Cheng-Xuan Li, Bao-Dong Wang, Kan Chen, Gui-Peng Yang, Jian-Fang Chen, Li-Na Lin, Zi-Cheng Wang\",\"doi\":\"10.1002/lno.12458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inflow of warm and nutrient-rich Pacific Water (PW) through the Bering Strait into the Arctic Ocean is likely to have far-reaching consequences for the ecosystem and biogenic sulfur cycle in the Earth's sensitive subarctic–arctic region of the Pacific sector, even impacting climate change under global warming scenarios. We performed a detailed biogeochemical study of summer biogenic sulfur cycling from cold (2012) to warm (2014) years in the Bering Strait and the Chukchi Sea, so as to highlight the importance of enhanced Pacific inflow in driving dimethylsulfide (DMS) variability. In the Bering Strait, the enhanced Pacific inflow led to the vertical expansion of the eastern high-DMS regions due to the vertical extension of Alaska Coastal Water, and the horizontal expansion of the western surface high-DMS regions due to the westward intrusion of Bering Shelf Water. The enhanced extension of PW potentially stimulated seawater warming, the northward retreat of the ice edge, and the enlargement of sea ice-free areas in the Chukchi Sea. The northern ice melting zone at 71°N with a bloom of phytoplankton was an area of locally high dimethylsulfoniopropionate concentrations and slow DMS consumption in 2012. A hotspot for dimethylated sulfur compound concentrations and DMS sea–air flux occurred in the convergence region near 67.7°N during 2014, due to enhanced mixing caused by increased Bering Sea Water. Owing to the increased advection of PW during 2012–2014, surface DMS and its emission to the atmosphere increased sharply by threefold in the Chukchi Sea.</p>\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":\"69 1\",\"pages\":\"81-103\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lno.12458\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lno.12458","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Response of distributions and emissions of summer biogenic sulfur in the Pacific Arctic to enhanced Pacific Water inflow
The inflow of warm and nutrient-rich Pacific Water (PW) through the Bering Strait into the Arctic Ocean is likely to have far-reaching consequences for the ecosystem and biogenic sulfur cycle in the Earth's sensitive subarctic–arctic region of the Pacific sector, even impacting climate change under global warming scenarios. We performed a detailed biogeochemical study of summer biogenic sulfur cycling from cold (2012) to warm (2014) years in the Bering Strait and the Chukchi Sea, so as to highlight the importance of enhanced Pacific inflow in driving dimethylsulfide (DMS) variability. In the Bering Strait, the enhanced Pacific inflow led to the vertical expansion of the eastern high-DMS regions due to the vertical extension of Alaska Coastal Water, and the horizontal expansion of the western surface high-DMS regions due to the westward intrusion of Bering Shelf Water. The enhanced extension of PW potentially stimulated seawater warming, the northward retreat of the ice edge, and the enlargement of sea ice-free areas in the Chukchi Sea. The northern ice melting zone at 71°N with a bloom of phytoplankton was an area of locally high dimethylsulfoniopropionate concentrations and slow DMS consumption in 2012. A hotspot for dimethylated sulfur compound concentrations and DMS sea–air flux occurred in the convergence region near 67.7°N during 2014, due to enhanced mixing caused by increased Bering Sea Water. Owing to the increased advection of PW during 2012–2014, surface DMS and its emission to the atmosphere increased sharply by threefold in the Chukchi Sea.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.