{"title":"基于网络药理学和分子对接的茯苓治疗自闭症谱系障碍的机制研究","authors":"Haozhi Chen, Changlin Zhou, Wen Li, Yaoyao Bian","doi":"10.2174/0115734099266308231108112058","DOIUrl":null,"url":null,"abstract":"Background:: Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear. background: Recent epidemic survey data revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, but patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys and can improve intelligence, wisdom, and awareness. However, the underlying mechanism is unclear. Objective:: We performed network pharmacology analysis of the mechanism of Polygala– Acorus in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application. Methods:: The chemical compositions and targets corresponding to Polygala–Acorus were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, ChemSource.com, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated via molecular docking using AutoDock Vina and PyMOL software. Results:: Molecular docking analysis showed that the key active components of Polygala- Acorus interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of Polygala-Acorus (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB. Conclusion:: This study has preliminarily revealed the active ingredients and underlying mechanism of Polygala-Acorus in the treatment of ASD, and our predictions need to be proven by further experimentation.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"157 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Polygala-Acorus in Treating Autism Spectrum Disorder Based on Network Pharmacology and Molecular Docking\",\"authors\":\"Haozhi Chen, Changlin Zhou, Wen Li, Yaoyao Bian\",\"doi\":\"10.2174/0115734099266308231108112058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background:: Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear. background: Recent epidemic survey data revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, but patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys and can improve intelligence, wisdom, and awareness. However, the underlying mechanism is unclear. Objective:: We performed network pharmacology analysis of the mechanism of Polygala– Acorus in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application. Methods:: The chemical compositions and targets corresponding to Polygala–Acorus were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, ChemSource.com, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated via molecular docking using AutoDock Vina and PyMOL software. Results:: Molecular docking analysis showed that the key active components of Polygala- Acorus interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of Polygala-Acorus (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB. Conclusion:: This study has preliminarily revealed the active ingredients and underlying mechanism of Polygala-Acorus in the treatment of ASD, and our predictions need to be proven by further experimentation.\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"157 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099266308231108112058\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734099266308231108112058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Mechanism of Polygala-Acorus in Treating Autism Spectrum Disorder Based on Network Pharmacology and Molecular Docking
Background:: Recent epidemic survey data have revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, while Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys, and can improve intelligence, wisdom, and awareness; however, the underlying mechanism of action is unclear. background: Recent epidemic survey data revealed a globally increasing prevalence of autism spectrum disorders (ASDs). Currently, Western medicine mostly uses a combination of comprehensive intervention and rehabilitative treatment, but patient outcomes remain unsatisfactory. Polygala–Acorus, used as a pair drug, positively affects the brain and kidneys and can improve intelligence, wisdom, and awareness. However, the underlying mechanism is unclear. Objective:: We performed network pharmacology analysis of the mechanism of Polygala– Acorus in treating ASD and its potential therapeutic effects to provide a scientific basis for the pharmaceutical’s clinical application. Methods:: The chemical compositions and targets corresponding to Polygala–Acorus were obtained using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform, ChemSource.com, and PharmMapper database. Disease targets in ASD were screened using the DisGeNET, DrugBank, and GeneCards databases. Gene Ontology functional analysis and metabolic pathway analysis (Kyoto Encyclopedia of Genes and Genomes) were performed using the Metascape database and validated via molecular docking using AutoDock Vina and PyMOL software. Results:: Molecular docking analysis showed that the key active components of Polygala- Acorus interacted with the following key targets: EGFR, SRC, MAPK1, and ALB. Thus, the key active components of Polygala-Acorus (sibiricaxanthone A, sibiricaxanthone B tenuifolin, polygalic acid, cycloartenol, and 8-isopentenyl-kaempferol) have been found to bind to EGFR, SRC, MAPK1, and ALB. Conclusion:: This study has preliminarily revealed the active ingredients and underlying mechanism of Polygala-Acorus in the treatment of ASD, and our predictions need to be proven by further experimentation.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.