{"title":"大分子阿仑膦酸钠加速骨折愈合的位点可激活靶向","authors":"Makoto Matsui, Yuka Kaihara, Yuto Honda, Nobuhiro Nishiyama, Yutaka Miura","doi":"10.1080/14686996.2023.2286218","DOIUrl":null,"url":null,"abstract":"Sustainable social activity is a major goal in an aging society, although this is limited by loss of athleticism, with osteoporosis-related fractures being the most common cause of long-term behavi...","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"16 3","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site-activatable targeting of macromolecular alendronate for accelerated fracture healing\",\"authors\":\"Makoto Matsui, Yuka Kaihara, Yuto Honda, Nobuhiro Nishiyama, Yutaka Miura\",\"doi\":\"10.1080/14686996.2023.2286218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable social activity is a major goal in an aging society, although this is limited by loss of athleticism, with osteoporosis-related fractures being the most common cause of long-term behavi...\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2023.2286218\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2286218","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Site-activatable targeting of macromolecular alendronate for accelerated fracture healing
Sustainable social activity is a major goal in an aging society, although this is limited by loss of athleticism, with osteoporosis-related fractures being the most common cause of long-term behavi...
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.