基于机器学习的三峡库区滑坡敏感性自动制图

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-11-28 DOI:10.1007/s11004-023-10116-3
Junwei Ma, Dongze Lei, Zhiyuan Ren, Chunhai Tan, Ding Xia, Haixiang Guo
{"title":"基于机器学习的三峡库区滑坡敏感性自动制图","authors":"Junwei Ma, Dongze Lei, Zhiyuan Ren, Chunhai Tan, Ding Xia, Haixiang Guo","doi":"10.1007/s11004-023-10116-3","DOIUrl":null,"url":null,"abstract":"<p>Machine learning (ML)-based landslide susceptibility mapping (LSM) has achieved substantial success in landslide risk management applications. However, the complexity of classically trained ML is often beyond nonexperts. With the rapid growth of practical applications, an “off-the-shelf” ML technique that can be easily used by nonexperts is highly relevant. In the present study, a new paradigm for an end-to-end ML modeling was adopted for LSM in the Three Gorges Reservoir area (TGRA) using automated machine learning (AutoML) as the backend model support for the paradigm. A well-defined database consisting of data from 290 landslides and 11 conditioning factors was collected for implementing AutoML and compared with classically trained ML approaches. The stacked ensemble model from AutoML achieved the best performance (0.954), surpassing the support vector machine with artificial bee colony optimization (ABC-SVM, 0.931), gray wolf optimization (GWO-SVM, 0.925), particle swarm optimization (PSO-SVM, 0.925), water cycle algorithm (WCA-SVM, 0.925), grid search (GS-SVM, 0.920), multilayer perceptron (MLP, 0.908), classification and regression tree (CART, 0.891), K-nearest neighbor (KNN, 0.898), and random forest (RF, 0.909) in terms of the area under the receiver operating characteristic curve (AUC). Notable improvements of up to 11% in AUC demonstrate that the AutoML approach succeeded in LSM and could be used to select the best model with minimal effort or intervention from the user. Moreover, a simple model that has been customarily ignored by practitioners and researchers has been identified with performance satisfying practical requirements. The experimental results indicate that AutoML provides an attractive alternative to manual ML practice, especially for practitioners with little expert knowledge in ML, by delivering a high-performance off-the-shelf solution for ML model development for LSM.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Machine Learning-Based Landslide Susceptibility Mapping for the Three Gorges Reservoir Area, China\",\"authors\":\"Junwei Ma, Dongze Lei, Zhiyuan Ren, Chunhai Tan, Ding Xia, Haixiang Guo\",\"doi\":\"10.1007/s11004-023-10116-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning (ML)-based landslide susceptibility mapping (LSM) has achieved substantial success in landslide risk management applications. However, the complexity of classically trained ML is often beyond nonexperts. With the rapid growth of practical applications, an “off-the-shelf” ML technique that can be easily used by nonexperts is highly relevant. In the present study, a new paradigm for an end-to-end ML modeling was adopted for LSM in the Three Gorges Reservoir area (TGRA) using automated machine learning (AutoML) as the backend model support for the paradigm. A well-defined database consisting of data from 290 landslides and 11 conditioning factors was collected for implementing AutoML and compared with classically trained ML approaches. The stacked ensemble model from AutoML achieved the best performance (0.954), surpassing the support vector machine with artificial bee colony optimization (ABC-SVM, 0.931), gray wolf optimization (GWO-SVM, 0.925), particle swarm optimization (PSO-SVM, 0.925), water cycle algorithm (WCA-SVM, 0.925), grid search (GS-SVM, 0.920), multilayer perceptron (MLP, 0.908), classification and regression tree (CART, 0.891), K-nearest neighbor (KNN, 0.898), and random forest (RF, 0.909) in terms of the area under the receiver operating characteristic curve (AUC). Notable improvements of up to 11% in AUC demonstrate that the AutoML approach succeeded in LSM and could be used to select the best model with minimal effort or intervention from the user. Moreover, a simple model that has been customarily ignored by practitioners and researchers has been identified with performance satisfying practical requirements. The experimental results indicate that AutoML provides an attractive alternative to manual ML practice, especially for practitioners with little expert knowledge in ML, by delivering a high-performance off-the-shelf solution for ML model development for LSM.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-023-10116-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10116-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

基于机器学习(ML)的滑坡敏感性制图(LSM)在滑坡风险管理应用中取得了巨大的成功。然而,经过经典训练的机器学习的复杂性往往超出非专业人士。随着实际应用的快速增长,一种非专家可以轻松使用的“现成的”ML技术是高度相关的。在本研究中,采用一种新的端到端机器学习建模范式,以自动机器学习(AutoML)作为该范式的后端模型支持,对三峡库区(TGRA) LSM进行端到端机器学习建模。收集了来自290个滑坡和11个条件因素的数据组成的定义良好的数据库,用于实现AutoML,并与经典训练的ML方法进行了比较。AutoML的堆叠集成模型获得了最好的性能(0.954),超过了人工蜂群优化(ABC-SVM, 0.931)、灰狼优化(GWO-SVM, 0.925)、粒子群优化(PSO-SVM, 0.925)、水循环算法(WCA-SVM, 0.925)、网格搜索(GS-SVM, 0.920)、多层感知器(MLP, 0.908)、分类与回归树(CART, 0.891)、k近邻(KNN, 0.898)和随机森林(RF, 0.908)的支持向量机。0.909),表示接收器工作特性曲线(AUC)下的面积。AUC的显著改进高达11%,这表明AutoML方法在LSM中取得了成功,并且可以在用户最小的努力或干预下选择最佳模型。此外,一个通常被实践者和研究者忽视的简单模型也被证明具有满足实际要求的性能。实验结果表明,通过为LSM的ML模型开发提供高性能的现成解决方案,AutoML为人工ML实践提供了一个有吸引力的替代方案,特别是对于缺乏ML专业知识的从业者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Machine Learning-Based Landslide Susceptibility Mapping for the Three Gorges Reservoir Area, China

Machine learning (ML)-based landslide susceptibility mapping (LSM) has achieved substantial success in landslide risk management applications. However, the complexity of classically trained ML is often beyond nonexperts. With the rapid growth of practical applications, an “off-the-shelf” ML technique that can be easily used by nonexperts is highly relevant. In the present study, a new paradigm for an end-to-end ML modeling was adopted for LSM in the Three Gorges Reservoir area (TGRA) using automated machine learning (AutoML) as the backend model support for the paradigm. A well-defined database consisting of data from 290 landslides and 11 conditioning factors was collected for implementing AutoML and compared with classically trained ML approaches. The stacked ensemble model from AutoML achieved the best performance (0.954), surpassing the support vector machine with artificial bee colony optimization (ABC-SVM, 0.931), gray wolf optimization (GWO-SVM, 0.925), particle swarm optimization (PSO-SVM, 0.925), water cycle algorithm (WCA-SVM, 0.925), grid search (GS-SVM, 0.920), multilayer perceptron (MLP, 0.908), classification and regression tree (CART, 0.891), K-nearest neighbor (KNN, 0.898), and random forest (RF, 0.909) in terms of the area under the receiver operating characteristic curve (AUC). Notable improvements of up to 11% in AUC demonstrate that the AutoML approach succeeded in LSM and could be used to select the best model with minimal effort or intervention from the user. Moreover, a simple model that has been customarily ignored by practitioners and researchers has been identified with performance satisfying practical requirements. The experimental results indicate that AutoML provides an attractive alternative to manual ML practice, especially for practitioners with little expert knowledge in ML, by delivering a high-performance off-the-shelf solution for ML model development for LSM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1