{"title":"外声作用下N2和Ar对预混沼气射流火焰的稀释作用","authors":"Buğrahan Alabaş, İlker Yılmaz, Yakup Çam","doi":"10.1016/j.jppr.2023.09.001","DOIUrl":null,"url":null,"abstract":"<p>In this study, combustion instabilities and flue gas emission changes under different dilutions of N<sub>2</sub> (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH<sub>4</sub> - 30% CO<sub>2</sub>) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N<sub>2</sub> dilution. CO and NO<sub>x</sub> emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N<sub>2</sub> dilution.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"36 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement\",\"authors\":\"Buğrahan Alabaş, İlker Yılmaz, Yakup Çam\",\"doi\":\"10.1016/j.jppr.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, combustion instabilities and flue gas emission changes under different dilutions of N<sub>2</sub> (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH<sub>4</sub> - 30% CO<sub>2</sub>) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N<sub>2</sub> dilution. CO and NO<sub>x</sub> emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N<sub>2</sub> dilution.</p>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jppr.2023.09.001\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jppr.2023.09.001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement
In this study, combustion instabilities and flue gas emission changes under different dilutions of N2 (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH4 - 30% CO2) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N2 dilution. CO and NOx emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N2 dilution.
期刊介绍:
Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.