{"title":"一种用于饮食监测应用的高智能MEMS丙酮气体传感器阵列","authors":"Jae Eun Lee, Chan Kyu Lim, Hyunjoon Song, Sung-Yool Choi, Dae-Sik Lee","doi":"10.1186/s40486-021-00136-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"9 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00136-1","citationCount":"0","resultStr":"{\"title\":\"A highly smart MEMS acetone gas sensors in array for diet-monitoring applications\",\"authors\":\"Jae Eun Lee, Chan Kyu Lim, Hyunjoon Song, Sung-Yool Choi, Dae-Sik Lee\",\"doi\":\"10.1186/s40486-021-00136-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-021-00136-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-021-00136-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-021-00136-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A highly smart MEMS acetone gas sensors in array for diet-monitoring applications
In the present work, gas sensor arrays consisted of four different sensing materials based on CuO and their depositions on the MEMS microheaters were designed, fabricated and characterized. The sensor array is consisted with CuO, CuO with Pt NPs, ZnO–CuO and ZnO–CuO with Au NPs and their gas sensing properties are characterized for detection of exhaled breath-related VOCs. Through MEMS microheaters, power consumption is considered for application to healthcare devices which requires ultrasensitive acetone gas sensitivity. Also, using the principal component analysis, it enables to discriminate acetone gas, a biomarker for fat burning during diet, with other VOCs gases. The device would be applicable for on-site diet monitoring in the field of mobile healthcare.