金融市场的实证分析:来自统计物理应用的启示

Haochen Li, Yi Cao, Maria Polukarov, Carmine Ventre
{"title":"金融市场的实证分析:来自统计物理应用的启示","authors":"Haochen Li, Yi Cao, Maria Polukarov, Carmine Ventre","doi":"arxiv-2308.14235","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a physical model inspired by statistical physics\nfor predicting price volatility and expected returns by leveraging Level 3\norder book data. By drawing parallels between orders in the limit order book\nand particles in a physical system, we establish unique measures for the\nsystem's kinetic energy and momentum as a way to comprehend and evaluate the\nstate of limit order book. Our model goes beyond examining merely the top\nlayers of the order book by introducing the concept of 'active depth', a\ncomputationally-efficient approach for identifying order book levels that have\nimpact on price dynamics. We empirically demonstrate that our model outperforms\nthe benchmarks of traditional approaches and machine learning algorithm. Our\nmodel provides a nuanced comprehension of market microstructure and produces\nmore accurate forecasts on volatility and expected returns. By incorporating\nprinciples of statistical physics, this research offers valuable insights on\nunderstanding the behaviours of market participants and order book dynamics.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Analysis on Financial Market: Insights from the Application of Statistical Physics\",\"authors\":\"Haochen Li, Yi Cao, Maria Polukarov, Carmine Ventre\",\"doi\":\"arxiv-2308.14235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a physical model inspired by statistical physics\\nfor predicting price volatility and expected returns by leveraging Level 3\\norder book data. By drawing parallels between orders in the limit order book\\nand particles in a physical system, we establish unique measures for the\\nsystem's kinetic energy and momentum as a way to comprehend and evaluate the\\nstate of limit order book. Our model goes beyond examining merely the top\\nlayers of the order book by introducing the concept of 'active depth', a\\ncomputationally-efficient approach for identifying order book levels that have\\nimpact on price dynamics. We empirically demonstrate that our model outperforms\\nthe benchmarks of traditional approaches and machine learning algorithm. Our\\nmodel provides a nuanced comprehension of market microstructure and produces\\nmore accurate forecasts on volatility and expected returns. By incorporating\\nprinciples of statistical physics, this research offers valuable insights on\\nunderstanding the behaviours of market participants and order book dynamics.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.14235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.14235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们引入了一个受统计物理学启发的物理模型,通过利用三级订单簿数据来预测价格波动和预期回报。通过将极限订单簿中的订单与物理系统中的粒子进行类比,建立了系统动能和动量的独特度量,作为理解和评估极限订单簿状态的一种方法。我们的模型通过引入“活跃深度”的概念,超越了仅仅检查订单簿的参与者,这是一种有效的计算方法,用于识别影响价格动态的订单簿水平。我们的经验证明,我们的模型优于传统方法和机器学习算法的基准。我们的模型提供了对市场微观结构的细致理解,并对波动性和预期回报做出了更准确的预测。通过结合统计物理原理,本研究为理解市场参与者的行为和订单动态提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Analysis on Financial Market: Insights from the Application of Statistical Physics
In this study, we introduce a physical model inspired by statistical physics for predicting price volatility and expected returns by leveraging Level 3 order book data. By drawing parallels between orders in the limit order book and particles in a physical system, we establish unique measures for the system's kinetic energy and momentum as a way to comprehend and evaluate the state of limit order book. Our model goes beyond examining merely the top layers of the order book by introducing the concept of 'active depth', a computationally-efficient approach for identifying order book levels that have impact on price dynamics. We empirically demonstrate that our model outperforms the benchmarks of traditional approaches and machine learning algorithm. Our model provides a nuanced comprehension of market microstructure and produces more accurate forecasts on volatility and expected returns. By incorporating principles of statistical physics, this research offers valuable insights on understanding the behaviours of market participants and order book dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short-maturity Asian options in local-stochastic volatility models Automate Strategy Finding with LLM in Quant investment Valuation Model of Chinese Convertible Bonds Based on Monte Carlo Simulation Semi-analytical pricing of options written on SOFR futures A functional variational approach to pricing path dependent insurance policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1